

Central Waitemata Harbour Ecological Monitoring: 2000 - 2006

September 2006 TP314

Auckland Regional Council Technical Publication No. 314, 2006 ISSN 1175-205X ISBN – 13 : 978-1-877416-47-7 ISBN – 10 : 1877416-47-9 *Printed on recycled paper*

Central Waitemata Harbour Ecological Monitoring: 2000 - 2006

Jane Halliday Judi Hewitt Carolyn Lundquist

Prepared for

Auckland Regional Council Environmental Research

© All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

NIWA Client Report: HAM2006-007 June 2006

NIWA Project: ARC06271

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand Phone +64-7-856 7026, Fax +64-7-856 0151 www.niwa.co.nz

Contents

1	Executive Summary	1
2	Introduction	3
2.1	Background	3
2.2	Risk context	3
2.2.1	Sedimentation effects.	3
2.2.2	Contaminant effects	4
2.2.3	Invasive species	4
2.3	Report focus	5
3	Methods	7
3.1	Macrofauna	7
3.2	Bivalve size class analysis	8
3.3	Site characteristics	9
3.4	Sediment characteristics	9
3.5	Statistical analyses	9
4	Present status of the benthic communities of Central Waitemata	11
4.1	Have there been any changes in site characteristics?	11
4.1.1	Hobsonville (HBV) Plate 1	11
4.1.2	Henderson Creek (HC) Plate 2	13
4.1.3	Whau River (Whau) Plate 3	13
4.1.4	Te Tokaroa Reef (Reef) Plate 4	13
4.1.5	Shoal Bay (ShB) Plate 5	13
4.1.6	Summary of site characteristics	14
4.2	At each site, are species exhibiting temporal variations that appear predictable?	16
4.2.1	Hobsonville (HBV)	17
4.2.2	Henderson Creek (HC)	22
4.2.3	Whau River (Whau)	25
4.2.4	Te Tokaroa Reef (Reef)	29
4.2.5	Shoal Bay (ShB)	32
4.3	Are species abundances exhibiting similar patterns at all sites?	34

4.4	Have any changes in species over time led to changes in communities, or sites becoming more or less similar to each other?	35
4.4.1	Changes in site characteristics	35
4.4.2	Changes in communities	36
5	Information useful to the Central Waitemata modeling project	38
6	Conclusions and recommendations	40
7	Plates	42
8	Acknowledgements	48
9	References	49
10	Appendices	51
10.1	Appendix 1: Sensitivity of monitored taxa to sediments.	51
10.2	Appendix 2: Sensitivity of species to contaminants	53
10.3	Appendix 3: Invasive species found in Waitemata Harbour	54
10.4	Appendix 4: Sediment characteristics	57
10.5	Appendix 5: Benthic Invertebrate data collected between October 2000 and February 2006.	61

Reviewed by:

alma

D.Lohrer

Approved for release by:

S. Thrush

Formatting checked

A. Borthey

1 Executive Summary

This report details the results of a State of the Environment monitoring programme for the Central Waitemata conducted between October 2000 and February 2006. The focus of the programme was to monitor the ecological status and trends of change in macrobenthic communities in the Central Waitemata. The design of the programme matches those carried out in Mahurangi and Manukau Harbours.

Five intertidal soft-sediment sites are located in sub-regions of the Central Waitemata, with the sub-regions defined by hydrodynamic regions and drainage areas with significant intertidal habitats. The sites integrate over as many anthropogenic inputs as possible, while being distanced from any industry-specific source. The monitoring focuses on 20 taxa which should respond differently to changes in site characteristics. This method has proved useful in monitoring Manukau and Mahurangi and has been further validated in work carried out by NIWA and the University of Auckland on ways of defining healthy communities (Anderson et al. 2002).

This report addresses several questions relevant to State of the Environment monitoring:

- □ Have the sedimentary habitats represented by the sites changed?
- Have any of the sites undergone changes in monitored species or in overall community structure?
- □ If there are any changes to the ecology, do they reflect changes in habitat conditions (e.g., sedimentation) or can they be attributed to some other factor (e.g., long-term natural cycles or chemical contamination)?
- □ Are changes confined to one site or one area of the harbour or do they reflect a harbour-wide change?

While some changes in sediment characteristics have occurred at the sites over the monitored period, these have not been large changes and have not resulted in changes to the communities observed at the sites.

A number of changes in abundance of the monitored taxa have been observed, but, similar to the Manukau, these are primarily seasonal and multiyear cycles in abundance. The trends in abundance that have been observed are not consistent with either increased sedimentation or contamination.

Four trends in abundance were observed which were representative of large areas of the harbour. The bivalve Nucula decreased in abundance at the two outer sites and the central site. The polychaete Aquilaspio decreased at the two inner sites and the central site. A gastropod decreased and an anemone increased at the two inner sites. These changes may, with more data, turn out to be long-term cycles in abundance. Again, based on what we know of the species sensitivities, the changes in abundance seem unlikely to be associated with either increased sedimentation or contamination. That the two sites most similar in community composition are located on the same large intertidal flat that stretches between the entry of the Henderson Creek and the Whau River suggests that recruitment and dispersal dynamics may be playing a role.

The maintenance of different communities and differing population dynamics at the different sites suggest that each site contributes to the strength of the ecological monitoring programme. This, together with the consistency of some changes observed between nearby sites, leads us to recommend that the monitoring programme be continued in its entirety. Furthermore, the monitoring programme is providing useful information for other ARC projects. HBV is utilized as part of the upper Waitemata Harbour environmental monitoring programme (EMP) to help determine whether changes as a result of urbanisation of the upper Waitemata Harbour spread in the central Waitemata Harbour. Three of these sites help provide the definition of health for the Regional Discharges monitoring programme; in particular they provide information on how much effect variations in recruitment may have on the health model and the time series changes in community structure can be analysised to provide information on the relative importance of changes in bioturbators for the Central Waitemata modeling programme.

Further changes at Reef site may occur, associated with seagrass growth at the site. Based on past observations provided by the Manukau EMP seagrass growth in the Auckland region occurs in long-term cycles of expansion followed by contraction. Although the previous observations found no effect of the seagrass on community structure, we recommend, if seagrass growth continues, that samples taken in and out of seagrass are processed separately, and measurements are made of the area of the site covered by seagrass.

² Introduction

2.1 Background

In October 2000, a State of the Environment monitoring programme for the Central Waitemata was developed for the Auckland Regional Council (ARC). The programme was designed to be scientifically credible, practical, affordable and to meet the requirements of the Resource Management Act (1991). The focus of the programme was to monitor the ecological status and trends of change in macrobenthic communities in the Central Waitemata. The design of the programme matched that carried out in Mahurangi and Manukau Harbours.

Hewitt (2000) suggested that the Central Waitemata would be best represented by 6 intertidal sites, 5 soft sediment and one rocky habitat. In 2000, NIWA was commissioned to monitor the soft sediments and the University of Auckland was to monitor the rocky site. The soft-sediment sites were selected for monitoring in consultation with the ARC, and were chosen to integrate over as many aquatic inputs as possible, while being distanced from any industry-specific source. A site was placed in each of five sub-regions of the Central Waitemata, based on hydrodynamics and drainage areas with significant intertidal habitats (Figure 1; Hewitt, 2000). Details on site selection are given in the first report (Nicholls et al. 2002).

The monitoring focuses on a selection of species (see Nicholls et al. 2002) that could be expected to respond to changes in their surroundings in a variety of ways. This method has proved useful in monitoring Manukau and Mahurangi and has been further validated in work carried out by NIWA and the University of Auckland on ways of defining healthy communities (Anderson et al. 2002).

2.2 Risk context

Two of the most likely sources of anthropogenic effects on the Central Waitemata are increased sedimentation associated with urban development and contaminants associated with urban development and ongoing storm-water discharges. A less likely, but possible scenario, is the introduction of an invasive species displacing the natural communities.

2.2.1 Sedimentation effects.

To date there is little information available on sediment accumulation rates in the harbour, except for two sites (one intertidal, one subtidal) sampled near the Henderson Creek area in muddy sediments. However most of the catchments surrounding the central harbour are fully urbanised, therefore sedimentation rates are likely to be relatively low. A considerable amount is known of effects of increased sedimentation and suspended sediment concentrations on species abundances, both through NIWA

(FRST-funded) and ARC data. This body of work has been summarized in Gibbs et al (2004). The results for the monitored taxa are listed in Appendix 1.

2.2.2 Contaminant effects

The potential for pollution associated with storm-water inputs to the Central Waitemata is of serious concern to the ARC. A number of projects have investigated this potential (Williamson and Kelly 2003, Green et al. 2004, Kelly 2004, Reed and Webster 2004, Williamson 2004) and the ARC has developed a Regional Discharges monitoring Project (RDP). There are three parts to this project. (1) Monitoring of sediment concentrations of copper, zinc and lead at at 2-5 year intervals depending on contaminant concentrations. Ecology is also monitoring where contaminant concentrations are above threshold effects levels (TEL's). (2) Monitoring of benthic invertebrate communities at intervals triggered by the sediment chemistry sampling. (3) Building of a multivariate model of ecological health based on benthic invertebrate data collected from a number of sites throughout the Auckland Region (Anderson et al. 2002). In this model, the ecological community found at a site can be measured against the natural variability observed in healthy and impacted sites and allotted a health index. Some of the Central Waitemata Ecological monitoring sites provide information to this project; HBV, HC and Whau are all part of the model data, helping to form the definition of health. This model is still being refined to remove potential effects of sediment particle size and wave exposure.

No information is presently available on the sensitivity of the monitored taxa to most contaminants. However, in two FRST funded programmes, species abundance and chemical data collected by both NIWA and the ARC are being analysed. In one case this is to assess the degree to which species in coastal and estuarine waters are responding to multiple, rather than single, stressors. In the other, the focus is on determining methods to measure health, including indicator species. In both these projects, the relationships between the abundance of a number of species (including many of the monitored taxa) and concentrations of copper, zinc and lead in the < 63um sediment fraction are being assessed using quantile regressions. Quantile regressions investigate all responses to a stressor, rather than concentrating on a mean response. They are, therefore, very effective for situations where a number of factors operate within a constraining factor. A common phenomenon in ecology is for data points in scatter plots of species-environment data to be widely scattered beneath an upper (or above a lower) limit - a phenomenon described by Thomson et al. (1996) as a "factor ceiling". Quantile regressions based on 90th percentiles enable us to estimate the factor ceiling.

This analysis has shown that the majority of monitored species are sensitive to copper, zinc and lead, in the < 63um sediment fraction, at levels below the ERL guidelines (Appendix 2).

2.2.3 Invasive species

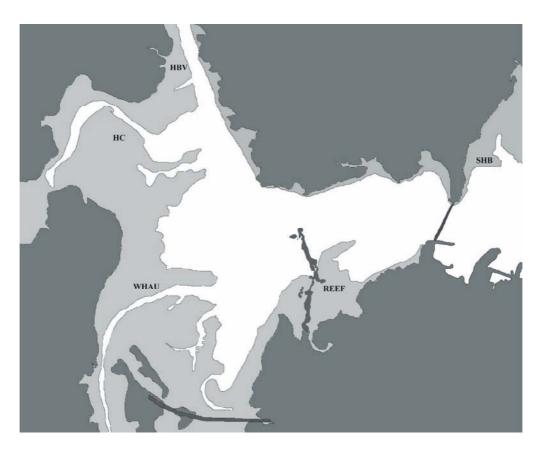
A number of invasive species have been recorded in the Waitemata (see Appendix 3). Of these 4 species were definitely found: *Musculista senhousia*; *Theora lubrica*;

Chaetopterus sp. A and *Pseudopolydora corniculata. Musculista* and *Pseudopolydora* are the most frequently found. *Musculista* has been found at all sites but only occasionally as a few isolated individuals, except in the Whau in April 05 when around 50 individuals were found scattered around the site. *Pseudopolydora* is found in low numbers on various occasions at Reef and ShB.

Two introduced Corophid amphipod species (*Monocorophium acherusicum* & *M. sextonae*) not previously recorded from the Waitemata were observed infrequently, in low numbers, at all sites in the first three years. However, the dominant Corophid amphipod at all sites was the native *Paracorophium excavatum*. On one occasion at a single site a couple of brozoans and serpulid worms specimens were found. Due to their scarcity these were not identified to a lower level thus it is not possible to determine whether they were invasives. Generally, the lack of temporal consistency or increasing densities recorded for the invasive species suggest they are unlikely to pose a problem.

2.3 Report focus

This report presents the results from monitoring the soft-sediment sites between October 2000 – February 2006 and details the present status of the benthic communities of the Central Waitemata. In particular the following questions are addressed:


- □ Have the sedimentary habitats represented by the sites changed?
- Have any of the sites undergone changes in monitored species or in overall community structure?
- □ If there are any changes to the ecology do they reflect changes in habitat conditions (e.g., sedimentation) or can they be attributed to some other factor (e.g., long-term natural cycles or chemical contamination)?
- □ Are changes confined to one site or one area of the harbour or do they reflect a harbour-wide change?

In the design of the monitoring strategy for the ARC, Hewitt (2000) recommended that after 5 years consideration should be given to whether the number of samples taken at a site, the number of visits per year, or the number of sites should be decreased. To keep consistency between the monitoring programmes, the ARC has decided to keep the number of samples taken at a site at 12. Comparison between the Manukau and the Mahurangi Ecological Monitoring Programmes emphasised the value gained by sampling 6 times per year, rather than 4 (Hewitt 2000). This leaves only dropping sites as an alternative. However, at this point in time the ARC would prefer to leave this question aside. Thus the design of the monitoring programme will not be discussed in this report.

The report also provides information on invasive species found in the harbour and bioturbation information useful for the Central Waitemata modeling programme.

Figure 1:

Map of Waitemata Harbour showing the five permanent soft-sediment monitoring sites at Hobsonville (HBV), Henderson Creek (HC), Whau River (Whau), Te Tokaroa Reef (Reef) and Shoal Bay (ShB).

₃ Methods

Five soft-sediment sites are sampled representing five different sub-regions of the Central Waitemata: Upper-Waitemata-Hobsonville (HBV); Henderson Creek (HC); Whau River (Whau); Meola Creek, Motions Creek and Te Tokaroa Reef area (Reef); and Shoal Bay (ShB) (see Figure 1). All sites are located at mid-tide level and each cover an area of 9000 m².

Sites are located in areas that are representative of the general character of the surrounding intertidal area and are as close to channels as practical (to aid access). Sites are marked by wooden stakes and located by GPS (Table 1).

Table 1:

Dimensions and GPS co-ordinates for the monitored sites in the Central Waitemata. Hobsonville (HBV), Henderson Creek (HC), Whau River (Whau), Te Tokaroa Reef (Reef), Shoal Bay (ShB).

Site	Dimensions (m)		GPS coordinates in NZMG	
	Х	Y	North	East
HBV	180	60	6487791	2660090
HC	100	90	6486226	2658567
Whau	100	90	6482500	2659244
Reef	180	50	6482597	2663505
ShB	180	50	6485554	2667087

Methods and techniques used for sampling and sample processing are consistent with those used at the established sentinel locations of Mahurangi and Manukau Harbours, and have been detailed in a previous report (Nicholls et al. 2002). Sampling is conducted every 2 months, and began in October 2000. The methods used are briefly described below.

3.1 Macrofauna

On each sampling occasion, 12 core samples (each 13 cm diameter, 15 cm deep) are collected from each site. To provide an adequate spread of cores over the site, a site is 'divided' into 12 equal sections and one core sample is taken from a random location within each section. To reduce the influence of previous sampling activity and spatial autocorrelation, samples are not placed within a 5 m radius of each other or of any samples collected in the previous 12 months. Core samples are sieved through a 500 µm mesh and the residues stained with rose bengal and preserved in 70 % isopropyl alcohol in seawater. Samples are then sorted and stored in 50 % isopropyl alcohol. The 20 selected species (see Table 2) are counted and stored in 50 % isopropyl alcohol. Other macrofauna are identified to the family level, where possible, and counted. These other macrofauna are not discarded, rather they are processed under other funding at least once per year.

Table 2:

List of twenty taxa recommended for ongoing monitoring in the Waitemata Harbour long-term
monitoring programme. As many genera and species change names with taxonomic reviews,
names in brackets indicate alternatives.

Order	Order Taxa		nonitored
		Manukau	Mahurangi
Bivalvia	Arthritica bifurca	\checkmark	\checkmark
	Austrovenus (Chione) stutchburyi	\checkmark	\checkmark
	Macomona (Tellina) liliana	\checkmark	\checkmark
	Nucula hartvigiana	✓	✓
	Paphies australis	х	Х
Cnidaria	Anthopleura aureoradiata	\checkmark	Х
Cumacea	Colurostylis lemurum	\checkmark	х
Gastropoda	Diloma subrostrata	х	х
	Haminoea zelandiae	х	х
	Notoacmea helmsi	\checkmark	\checkmark
	Zeacumantus lutulentus	х	х
Isopoda	Exosphaeroma spp.	\checkmark	Х
Polychaeta	Aonides oxycephala (trifida)	\checkmark	✓
	Aquilaspio (Prionospio)	\checkmark	~
	aucklandica Aricidea sp.	\checkmark	~
	Boccardia syrtis	\checkmark	х
	Euchone sp.	х	х
	Glycera sp.	х	х
	Heteromastus filiformis	х	\checkmark
	Macroclymenella stewartensis	\checkmark	Х

3.2 Bivalve size class analysis

After identification, individual *Paphies australis, Austrovenus stutchburyi* and *Macomona liliana* are measured and placed into size classes (<1 mm, 1 - 5 mm, 5 - 10 mm, then 10 mm increments). Unlike the Manukau and Mahurangi monitoring programmes, not all bivalve species are measured as the high densities of *Nucula hartvigiana* found at some sites would make this uneconomic. Instead only those species which grow to be relatively large, and for which we know that juveniles are more sensitive to stress than adults, are measured.

3.3 Site characteristics

During each site visit, attention is paid to the appearance of the site and the surrounding sandflat. In particular, surface sediment characteristics and the presence of birds, gastropods and plants are noted.

3.4 Sediment characteristics

Sediment characteristics (i.e., grain size, organic content and chlorophyll *a*) are also assessed at each site on each sampling occasion. At six random locations within the site, two small sediment cores (2 cm deep, 2 cm diameter) are collected, one to determine grain size and organic content and the other for chlorophyll *a* analysis. The six cores are pooled, and kept frozen in the dark prior to being analysed as described below.

Grain size: The samples are homogenised and a subsample of approximately 5 g of sediment taken, and digested in ~ 9% hydrogen peroxide until frothing ceases. The sediment sample is then wet sieved through 2000 μ m, 500 μ m, 250 μ m and 63 μ m mesh sieves. Pipette analysis is used to separate the <63 μ m fraction into >3.9 μ m and <3.9 μ m. All fractions are then dried at 60°C until a constant weight is achieved (fractions are weighed at ~ 40 h and then again at 48 h). The results of the analysis are presented as percentage weight of gravel/shell hash (>2000 μ m), coarse sand (500 – 2000 μ m), medium sand (250 – 500 μ m), fine sand (62.5 – 500 μ m), silt (3.9 – 62.5 μ m) and clay (<3.9 μ m). Mud content is calculated as the sum of the silt and clay content.

Chlorophyll *a*. Within 1 month of sampling, the full sample is freeze dried, weighed, then homogenised and a subsample (~0.5 g) taken for analysis. Chlorophyll *a* is extracted by boiling the sediment in 90% ethanol, and the extract processed using a spectrophotometer. An acidification step is used to separate degradation products from chlorophyll *a*.

Organic content: Approximately 5 g of sediment is placed in a dry, pre-weighed tray. The sample is then dried at 60°C until a constant weight is achieved (the sample is weighed after ~ 40 h and then again after 48 h). The sample is then ashed for 5.5 h at 400°C (Mook and Hoskin 1982) and then reweighed.

3.5 Statistical analyses

When the State of the Environment monitoring programme was developed for the ARC, the methods to be used in analysing the data were also detailed (Hewitt, 2000). This report recommended that, every 2 years, a graphical analysis of patterns in selected taxa abundances over time at each site should be conducted to identify seasonal patterns, multiyear patterns and trends.

A number of other analyses were conducted:

The presence of autocorrelation was assessed using plots of partial and inverse autocorrelation coefficients against lags and tests for white noise.

- Trends over time were assessed using regression techniques adjusted for autocorrelation where necessary. Non-linear trends were assessed using transformations (for logarithmic or exponential functions), 2 degree polynomials, splines or by t-tests (step trends).
- Changes in dominant taxa over time were investigated to determine whether observed changes in individual monitored taxa led to community changes.
- Overall changes in sediment characteristics were assessed using multivariate ordinations. A Principle Component Analysis, based on normalized Euclidean distances, was done on all sites and times. After examining the overall plot for seasonal differences, only October samples are presented in the figure 3 in the report.
- Multivariate ordination of ecological data collected in October of each year was used to determine whether community composition at the sites was changing over the monitored period. Ordination of raw, log transformed and presence/absence data were conducted, using both correspondence analysis and nonmetric multidimensional scaling based on Bray Curtis similarities. Only the nonmetric multidimensional scaling ordination is presented in this report, as both types show similar interpretations.
- Population dynamics were compared between sites using time series analysis of cross lag correlations.
- For taxa exhibiting trends at more than one site, the potential for large-scale climatic events to affect population dynamics was assessed using time series models that included the Southern Oscillation Index and air temperature statistics as dynamic correlates.

Note that all analyses conducted are performed on the sum of the 12 cores collected at a site.

Present status of the benthic communities of Central Waitemata¹

This programme was designed to monitor the ecological status and trends of change in macrobenthic communities in the Central Waitemata. An important process in detecting trends is determining temporal variability, as knowledge of cyclic patterns of recruitment aids in detection of long-term trends (Hewitt et al. 1994). Thus, in this report we ask the following questions:

- □ Have there been any changes in site characteristics?
- □ At each site, are species exhibiting temporal variations that appear predictable, i.e., trends, seasonal patterns or multiyear cycles?
- □ Are species' abundances exhibiting similar patterns at each site?
- Have any changes in species over time led to changes in communities, with sites becoming more or less similar to each other?

4.1 Have there been any changes in site characteristics?

4.1.1 Hobsonville (HBV) Plate 1

Site HBV is located on the sandflats near the Hobsonville Air Base, close to the deep channel entering the Upper Waitemata Harbour. The sandflat at HBV exhibits many of the characteristics of areas subject to high flow (coarse sediment, ripples in the sediment surface). Large fragments of old logs are often found buried below the sediment surface, and there is a thick shell layer approximately 15 cm below the surface. While the site itself has changed little since monitoring began, a small channel on the seaward/eastern side appears to be increasing in muddiness, as does the edge of the main channel.

Sediment at HBV is predominantly medium and fine sand, with a small amount of coarse sand (Table 3). The proportion of mud and fine sand was highest during the first 18 months sampling. This change in sediment characteristics can also be noted on the Principle Component Analysis (PCA) plot of sediment characteristics over time (Fig. 3). Since then no change in sediment characteristics have been noted. Chlorophyll *a* content of the sediments ranged between 8 and 17.5 μ g/g sediment, while the organic content is low and variable.

¹ Summary statistics of the monitored populations are presented in Appendix 5.

Waitemata Harbour Ecological Monitoring Programme

Table 3:

Summary of sediment characteristics at Hobsonville (HBV), Henderson Creek (HC), Whau River (Whau), Te Tokaroa Reef (Reef), Shoal Bay (ShB), from October 2000 to October 2005. Chla = chlorophyll *a* in μ g.g., coarse sand (500 – 2000 μ m), medium sand (250 – 500 μ m), fine sand (62.5 – 500 μ m), mud (< 62.5 μ m). Full results are given in Appendix 4.

site	date	%mud	%fine	%medium	%coarse	%organics	chla
			sand				
HBV	Oct-00	8.13	74.16	12.20	4.01	0.95	10.26
	Oct-01	5.32	73.67	14.90	4.02	0.81	16.50
	Oct-02	1.99	54.79	31.31	8.15	3.73	13.98
	Oct-03	1.55	50.07	39.00	7.84	0.78	7.97
	Oct-04	2.95	52.05	25.78	5.87	1.75	10.78
	Oct-05	2.12	54.51	36.31	6.86	1.53	17.55
	mean	3.68	59.88	26.59	6.12	1.59	12.84
HC	Oct-00	4.00	55.08	23.92	9.36	1.61	9.53
	Oct-01	2.30	58.56	30.63	7.43	1.46	21.67
	Oct-02	6.39	75.07	13.30	3.24	2.04	22.49
	Oct-03	6.26	77.57	12.42	2.70	1.90	20.34
	Oct-04	7.39	71.92	17.67	3.03	2.85	19.92
	Oct-05	9.47	77.16	10.86	2.01	2.24	18.41
	mean	5.97	69.23	18.13	4.63	2.02	18.73
Whau	Oct-00	2.77	93.64	1.79	0.80	0.76	5.23
	Oct-01	2.75	92.42	2.78	0.47	0.86	10.72
	Oct-02	3.30	91.71	3.79	0.56	0.75	7.79
	Oct-03	2.92	93.55	2.24	0.66	0.92	6.87
	Oct-04	2.06	93.08	1.07	0.39	1.17	11.22
	Oct-05	3.15	92.89	1.40	0.90	1.01	12.41
	Mean	2.82	92.88	2.18	0.63	0.91	9.04
Reef	Oct-00	4.09	91.80	3.77	0.28	0.90	7.28
	Oct-01	3.43	89.44	5.21	0.26	0.74	10.54
	Oct-02	5.08	92.25	1.67	0.11	1.04	10.46
	Oct-03	6.74	90.29	2.59	0.27	1.08	6.42
	Oct-04	6.47	91.82	1.67	0.04	1.20	5.36
	Oct-05	7.61	90.31	1.90	0.11	1.64	18.45
	Mean	5.57	90.99	2.80	0.18	1.10	9.75
ShB	Oct-00	3.46	78.71	14.11	2.46	0.63	5.23
	Oct-01	13.01	63.30	22.43	0.70	0.48	10.72
	Oct-02	3.06	80.84	11.70	3.33	0.81	7.79
	Oct-03	3.25	79.66	12.31	2.13	0.70	6.87
	Oct-04	1.67	72.67	24.18	0.77	0.87	8.37
	Oct-05	4.83	84.69	8.11	0.87	1.01	14.32
	Mean	4.88	76.65	15.47	1.71	0.75	8.89

4.1.2 Henderson Creek (HC) Plate 2

Site HC is located adjacent to Henderson Creek on a large intertidal flat, which is fringed by mangroves on the upper edge and supports patches of Pacific oysters. The sediment is generally free of surface features such as ripples. HC sediments are predominantly medium and fine sand (Table 3). This change in sediment composition can also be noted as a change on the PCA plot of this site (Fig. 3). The proportion of mud and fine sand has increased at this site over the six years of monitoring (Table 3). Chlorophyll *a* content is generally high, ranging from $9 - 38 \mu g/g$ sediment, with a cyclic pattern of lowest chlorophyll content observed in October. Organic content is low and variable.

4.1.3 Whau River (Whau) Plate 3

Site Whau is located on the north-western side of the Whau River. The flats here are large, sandy and they generally show signs of wind-wave activity (small ripples on the sediment surface). No changes have been noted at the site or the nearby channel. Sediment from Whau is predominantly fine sand (Table 3), with average chlorophyll *a* content (generally <10 μ g/g) and very low organic content (generally < 1 %).

4.1.4 Te Tokaroa Reef (Reef) Plate 4

The intertidal flat on the eastern side of Te Tokoroa Reef is a muddy sandflat with a small channel dissecting it. Of all the areas, this has the longest uninterrupted fetch, and the presence of the reef may make for wave and current interactions. The site itself is situated next to scattered patches of rock, well away from the channel, with high numbers of gastropods. A diatomaceous film often covers the site and *Ulva* has been observed on intertidal areas towards the channel on occasions. Since December 2004 patches of seagrass (*Zostera capricorni*) have established at the site (Plate 4). The number and size of these patches has slowly increased over time. Based on past observations of the Manukau ecological monitoring programme seagrass growth in the Auckland region occurs in long-term cycles of expansion followed by contraction. The expansion of the seagrass cover at Reef is also occurring at Snells Beach and in the Kaipara Harbour (according to people living in the area) and in Whangapoua Harbour (NIWA observations).

Sediment at Reef is also dominated by fine sand (87 - 95%); but this site exhibits the lowest proportion of coarse sand (< 1%) of all the monitored sites (Table 3). The chlorophyll *a* and organic content of the sediment are moderate to low.

4.1.5 Shoal Bay (ShB) Plate 5

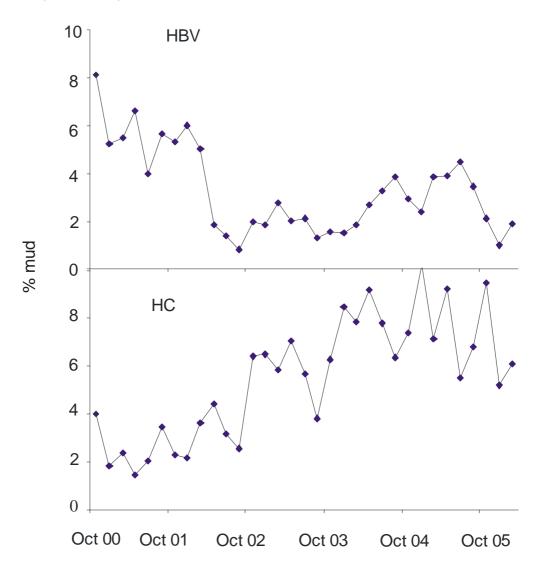
The intertidal flat selected for monitoring in Shoal Bay is adjacent to the Auckland Harbour Bridge, and near a large rock platform. The sediment in the area is coarse with ripples on the sediment surface - both characteristics of an exposed site. A buried pipeline running perpendicular to the shore intersects the site. Broken bottles, discarded tires and plastic are often observed on this sandflat.

Sediment at ShB is mainly fine sand, although a considerable proportion of medium sand is found (mean 15.5%, Table 3). ShB sediments have the lowest mean organic content (0.23 – 1.94%) of all the monitored sites, and chlorophyll *a* is frequently low.

4.1.6 Summary of site characteristics

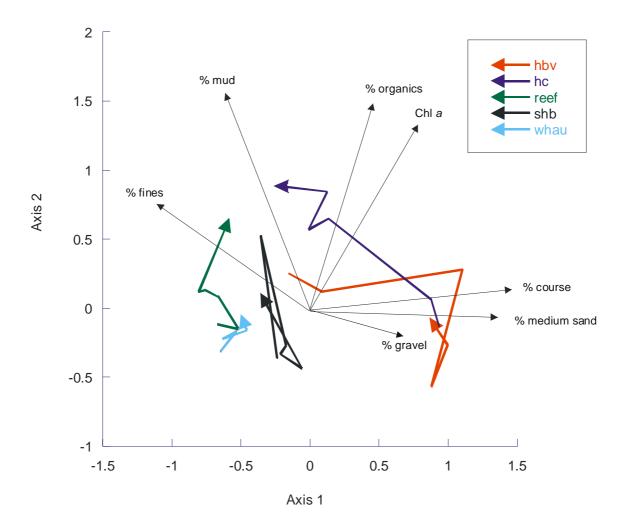
Table 4:

Analysis of temporal variability in sediment characteristics at five sites from October 2000 to February 2005; Hobsonville (HBV), Henderson Creek (HC), Whau River (Whau), Te Tokaroa Reef (Reef) and Shoal Bay (ShB): Average annual variability (SD) of sediment % by weight, coarse sand (500 – 2000 μ m), medium sand (250 – 500 μ m), fine sand (62.5 – 500 μ m), mud (< 62.5 μ m) and Chla = chlorophyll *a*. Note: gravel faction (>2000 μ m) not included.


site	%mud	%fine	%medium	%coarse	%organics	chla
		sand	sand	sand		μ g .g ⁻¹
HBV	1.18	5.92	6.27	1.70	1.01	3.00
HC	1.20	7.40	6.86	1.49	0.63	5.29
Whau	1.73	2.49	1.38	0.16	0.83	2.51
Reef	1.86	6.82	6.33	1.52	0.26	1.79
ShB	0.82	2.33	1.70	0.18	0.38	1.82

Values for organic content and chlorophyll a remain comparable to the other sentinel sites in the Manukau and Mahurangi Harbours (Funnell et al. 2005, Cummings et al. 2005). As commented on in the previous report, mean chlorophyll *a* varied among sites, with highest values at HC and lowest at ShB and Whau (Table 3). Organic content was low at all sites (i.e., <3%) and, similar to chlorophyll a, was lowest at ShB (Table 3).

The sites can be split into two groups on the basis of within-year variability in sediment characteristics: Whau, ShB and Reef have lower variability than HBV and HC (Table 4). Few consistent seasonal fluctuations were observed except for chlorophyll *a* (at HBV and HC) and organic content (at all sites). Organic content also exhibited multiyear cycles. After 3.5 yrs, sites HBV and HC showed signs of progressive change in grain size, with %mud decreasing at HBV and increasing at HC. This change has not continued, although HC has become increasingly variable (Fig. 2 & 3). Occasionally high percentage mud values were recorded for a site, for example ShB October 2001 (see Table 3). These are likely to be caused by localised storm events.


Figure 2:

Percent mud content decreased at HBV after 1-5 years and increased at HC over 3 years. Temporal variability at HC has increased.

Figure 3:

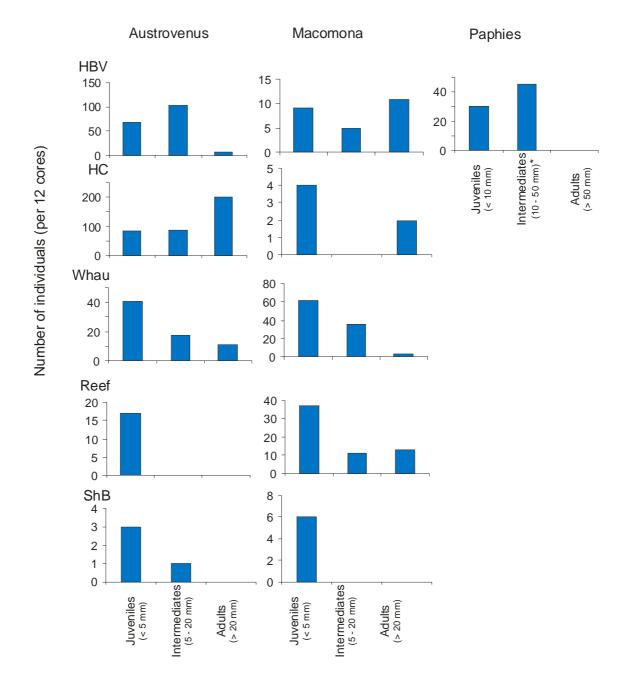
Principle components analysis of site sediment properties, plotted in two dimentional space, showing changes over time at the sites. Superimposed on the plot are the sediment characteristics. The position of the sediment characteristics relative to the sites show which characteristics dominate the sites.

4.2 At each site, are species exhibiting temporal variations that appear predictable?

This section describes patterns observed in species abundances at a site. Three types of patterns are described: trends, seasonal patterns that are similar in timing from year to year; and multiyear patterns. The latter are usually variations in the magnitude of seasonal recruitment, although the description also covers species that have multiyear recruitment patterns.

4.2.1 Hobsonville (HBV)

Table 5:


The three most abundant monitored taxa found over time at HBV.

Date	Most abundant	⇔	Least abundant
Oct-00	Nucula	Aonides	Austrovenus
Oct-01	Nucula	Aonides	Austrovenus
Oct-02	Nucula	Aonides	Austrovenus
Oct-03	Nucula	Aonides	Austrovenus
Oct-04	Nucula	Aonides	Austrovenus
Oct-05	Nucula	Aonides	Notoacmea

The site was dominated by a few, reasonably abundant taxa, with abundances of other taxa remaining fairly low (< 2 per core). The small deposit-feeding bivalve Nucula hartvigiana was by far the most abundant species at HBV throughout the sampling period (Table 5). The polychaete Aonides oxycephala and the cockle Austrovenus stutchburyi were also consistently abundant. The limpet Notoacmea helmsi, the polychaete Aquilaspio aucklandica and the pipi Paphies australis were generally amongst the five most dominant taxa. This site was the only site at which Paphies were consistently found, although the population was predominantly juveniles <10 mm (Fig 4), as adults prefer to live further down the shore. Limited numbers of adult Austrovenus occurred at HBV. Conversely, adult Macomona liliana were relatively abundant, with numbers similar to HC and Reef. Unlike Paphies, adult Austrovenus and Macomona are found at a wide range of tidal heights, although larger adult Asutrovenus are often found on the edges of channel banks (Hewitt pers. comm.) and juvenile Macomona have been recorded moving down shore as they increase in size (Hewitt et al. 1997), suggesting some habitat-size preferences. The abundant juvenile Austrovenus found at this site may, therefore, either be produced onsite and nearby channel banks or further away in the harbour.

Figure 4:

Size class distributions of cockles *(Austrovenus stutchburyi),* wedge shells (*Macomona liliana*) and pipis (*Paphies australis*) in 3 distinctive size categories, measured as maximum shell width, at each site in June 2005. Population structures during recruitment periods are generally dominated by juveniles. To give a more general representation of population structure, this graph is based on June, typically a month when juvenile recruitment is low or absent. * = no *Paphies* >40 mm were found at this site.

Six species exhibited clear seasonal cycles (Table 6), *Aricidea, Boccardia, Aonides, Exosphaeroma, Anthopleura* and *Colurostylis lemurum*. All were most abundant in spring/summer. For the anemone, *Anthopleura*, these seasonal fluctuations overlay a steadily increasing trend in abundance. In contrast, the polychaete *Aquilaspio* has steadily decreased since 2001. Numbers of the mud snail, *Zeacumantus*, have

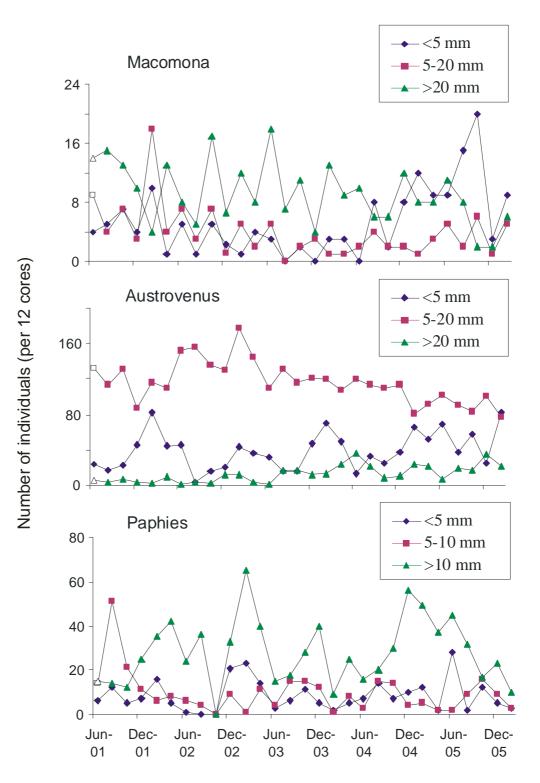
increased from very low levels over the past two years. *Notoacmea* and *Exosphaeroma* both exhibited multiyear cycles in abundance but no directional trend (Fig. 5). Similarly, the bivalves, *Paphies, Macomona*, and *Nucula*, all displayed highly variable patterns of abundance, but no periodicity or directional trends.

Table 6:

Summary of temporal patterns in abundance of selected taxa observed at each site between October 2000 to February 2006. Hobsonville (HBV), Henderson Creek (HC), Whau River (Whau), Te Tokaroa Reef (Reef) and Shoal Bay (ShB).

	Seasonal cycles	Multiyear patterns	Trends ²	Trend direction
HBV	Arcidea Boccardia Aonides Exosphaeroma Anthopleura Colurostylis	Notoacmea Exosphaeroma Colurostylis	Anthopleura Zeacumantus Aquilaspio	Increasing increasing decreasing
HC	Aricidea Anthopleura Notoacmea Exosphaeroma Macroclymenella	Austrovenus Anthopleura Nucula Notoacmea Diloma	Boccardia Aquilaspio Zeacumantus Anthopleura	decreasing decreasing increasing increasing
Whau	Austrovenus Boccardia	Boccardia	Nucula Aricidea Aquilaspio Anthopleura Notoacmea Macomona	decreasing decreasing decreasing decreasing (recient) decreasing (recient) increasing
Reef	Austrovenus Arthritica Haminoea	Austrovenus Euchone Haminoea Macroclymenella	Nucula Hetromastus	decreasing increasing
ShB	Austrovenus Aonidies Nucula Notoacmea	Aricidea Anthopleura Colurostylis Euchone	Nucula Heteromastus Aquilaspio	decreasing increasing Increasing

 $^{^{\}rm 2}$ Trends are statistically significant (p < 0.05) and identified using linear and non-linear methods


Figure 5:

Abundances of *Anthopleura* and *Zeacumantus* at HBV exhibit an increasing trend, while *Aquilaspio* exhibits a decreasing trend in abundance. *Colurostylis* is an example of a species exhibiting seasonal cycles and multiyear cycles in abundance

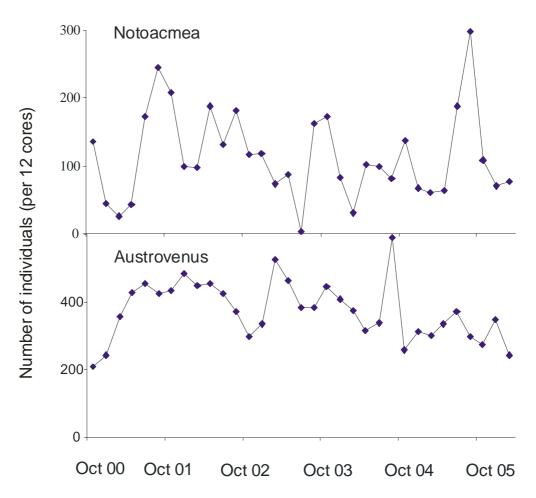
Figure 6:

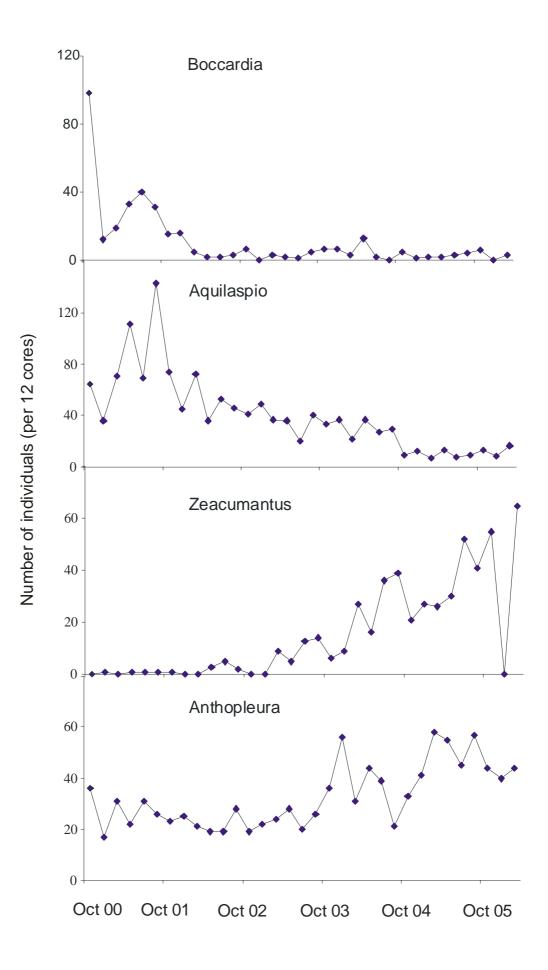
The abundance of different size classes of Austrovenus and Paphies found over time at site HBV.

4.2.2 Henderson Creek (HC)

Like HBV, *Nucula* was by far the most abundant species monitored; in fact *Nucula* is still more abundant at HC than at any other monitored site. *Austrovenus, Notoacmea,* and the polychaetes *Aricidea* sp. and *Aquilaspio aucklandica* were also common (Table 7). Abundances of *Austrovenus* were not predominantly driven by first year juveniles; large numbers of adults (>20 mm) and intermediate sized individuals were generally found (Fig. 4 & 6). The polychaete *Boccardia syrtis,* the anemone *Anthopleura aureoradiata* and the gastropods *Diloma subrostrata* and *Zeacumantus lutulentus* were occasionally ranked amongst the top 5 taxa. Abundances of *Macomona* were lower than at HBV, but seasonal recruitment of juvenile *Macomona* dominated the size structure over the last three years (Fig. 8).

Table 7:


Date	Most abundant	⇔	Least abundant
Oct-00	Nucula	Austrovenus	Notoacmea
Oct-01	Nucula	Austrovenus	Aricidea
Oct-02	Nucula	Austrovenus	Aricidea
Oct-03	Nucula	Austrovenus	Notoacmea
Oct-04	Nucula	Austrovenus	Notoacmea
Oct-05	Nucula	Austrovenus	Aricidea


The three most abundant monitored taxa found over time at HC.

Similar to the HBV site, the site was dominated by a few, reasonably abundant taxa, with abundances of other taxa remaining fairly low. To date, this site has the highest number of taxa exhibiting seasonal and multiyear cycles in abundance (Table 6). Multiyear cycles in abundance were again observed for Austrovenus, Anthopleura, Notoacmea and Aricidea (Table 6, Fig. 6). In addition to multiyear cycles in abundance Anthopleura and Notoacmea also exhibited annual cycles in abundance (Table 6, Fig 7). Recruitment of Austrovenus occurred regularly in February, although sizes of recruitment peaks were variable between years (Fig. 7) leading to a multiyear cycle in abundance. Multiyear cycles in abundance were also noted in the bivalve Nucula and the gastropod. Exosphaeroma and Macroclymenella both exhibited seasonal cycles in abundance. The polychaete Aquilaspio continues to decline in abundance since a large recruitment peak in October 2001 (Fig 7). Boccardia exhibited declining abundances over the monitored period (~100 to 10 individuals, see Fig. 7). Over the last two years, two species have exhibited significant increases in abundance, Zeacumantus and Anthopleura (Fig. 7). Three species exhibited high variability in abundance: Macomona (similar to HBV), Colurostylis and the bivalve Arthritica bifurca. Even when size classes of Macomona were plotted, no coherent pattern was observed (Fig. 8).

Figure 7:


At HC, *Notoacmea* exhibited annual recruitment in August – October and a multiyear cycle in abundance. *Austrovenus* exhibited multiyear cycles. *Boccardia* and *Aquilaspio* exhibited declining abundances over the monitored period and *Zeacumantus* and *Anthopleura* exhibited increasing abundance over the last two years of monitoring.

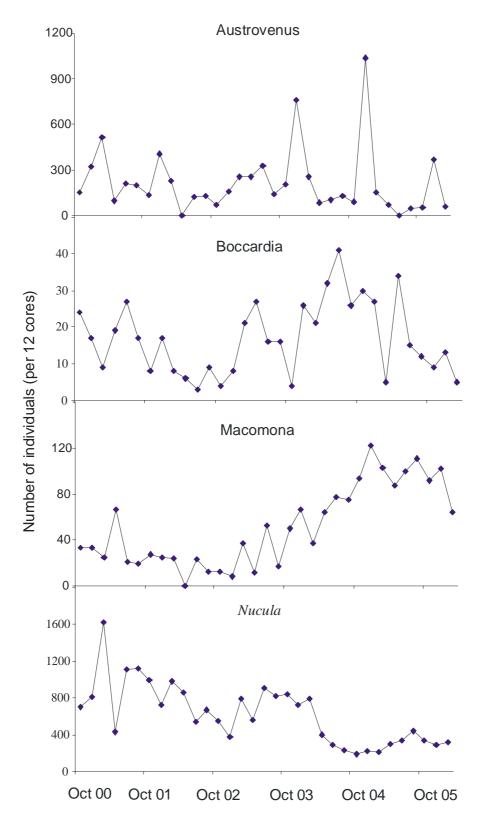
Figure 8:

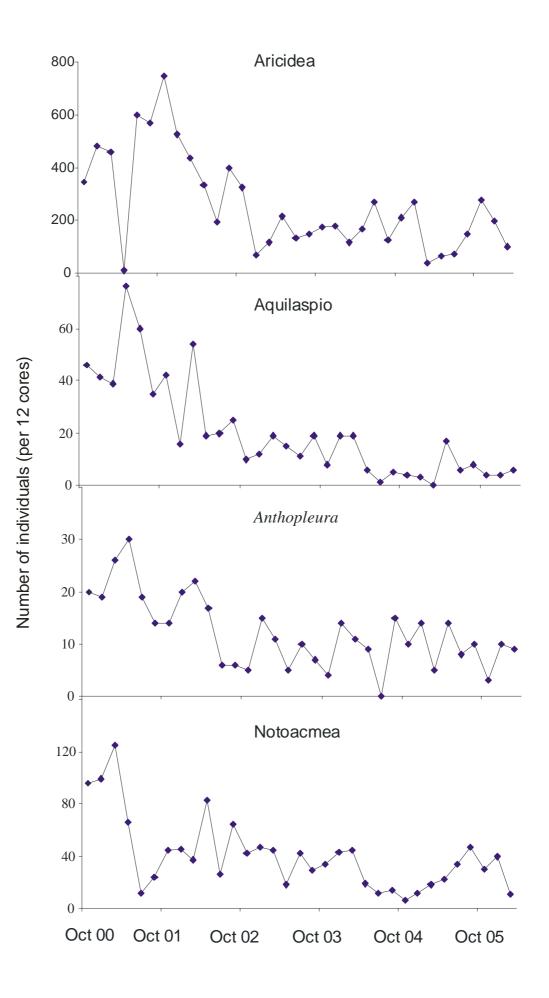
The abundance of different size classes of *Austrovenus* and *Macomona* found over time at site HC.

4.2.3 Whau River (Whau)

Nucula was also the most abundant taxa at Whau (Table 8). *Austrovenus* and *Aricidea* were the next most abundant taxa. *Notoacmea, Macomona* and the polychaete *Macroclymenella stewartensis* were among the five most dominant taxa on several occasions. Abundances of *Macomona* were higher at Whau than at the other sites, but the population generally consisted of juveniles (Fig. 4 & 10), suggesting the possibility that this is a sink population. However, as noted for *Austrovenus* at HBV, juveniles may be being produced from nearby channel sites. The gastropod *Haminoea zelandiae* was found here in greater total abundances than at any other monitored site.

Table 8:


Date	Most abundant	⇔	Least abundant
Oct-00	Nucula	Aricidea	Austrovenus
Oct-01	Nucula	Aricidea	Austrovenus
Oct-02	Nucula	Aricidea	Austrovenus
Oct-03	Nucula	Austrovenus	Aricidea
Oct-04	Aricidea	Nucula	Macroclymenella
Oct-05	Nucula	Aricidea	Macroclymenella


The three most abundant monitored taxa found over time at Whau.

A number of taxa exhibited high variability at this site. The number of juvenile *Austrovenus* peaked markedly in abundance in December 2003, 2004 and 2005 (Fig. 10). During this period however, the abundance of intermediate sized (5 – 20 mm) *Austrovenus* decreased from ~120 to 30 (Fig. 10). Strong *Austrovenus* recruitment was also noted at two other sites, Reef and ShB at the same time (Figs. 12 & 14). Recruitment of *Macomona* was low and variable for the first half of the measured period, higher numbers of juveniles and intermediate sized *Macomona* have appeared in the last three years (October 03 – February 06; Fig. 10). This has lead to an increase in the abundance of Macomona over the monitoring period (Table 6, fig 10). Five taxa (*Nucula, Aricidea, Aquilaspio, Anthopleura & Notoacmea*) have exhibited a decrease in abundance over the monitoring period (Fig. 9). The decline in abundance of Anthopleura and *Notoacmea* has only occurred over the last three years. Annual cycles in recruitment were observed in *Austrovenus*, and the polychaete *Boccardia*, also exhibited a multiyear cycle in abundance (Fig 9).

Figure 9:

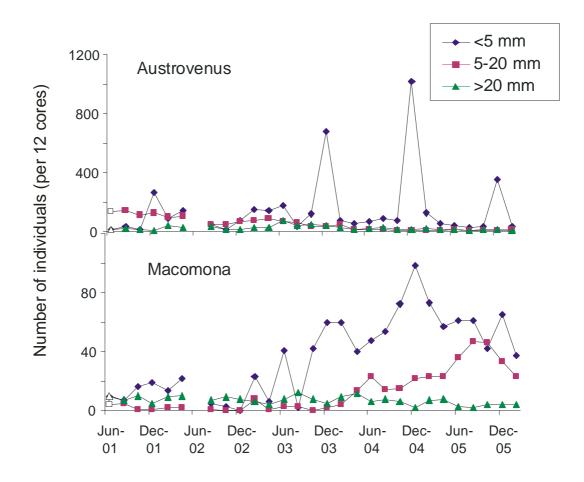
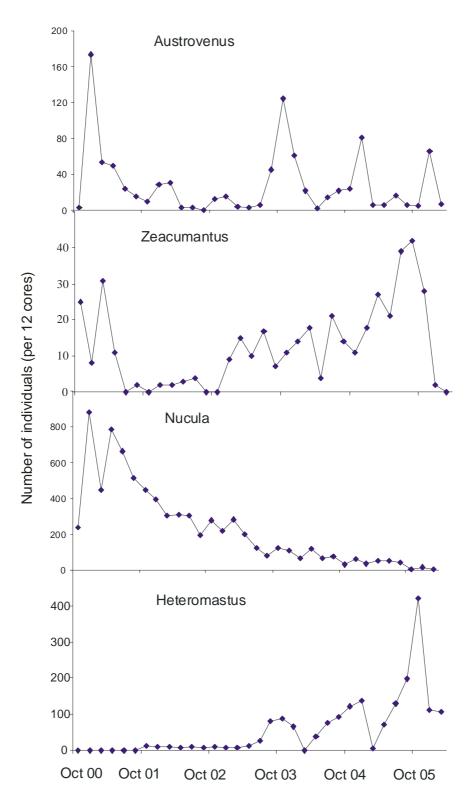

Austrovenus and *Boccardia* exhibit annual cycles in abundance; *Boccardia* also exhibits a multiyear cycle at Whau. *Aquilaspio* exhibits decreasing abundances over the monitored period, while *Nucula, Aricidea, Aquilaspio, Anthopleura* and *Notoacmea* exhibit declining abundances.

Figure 10:

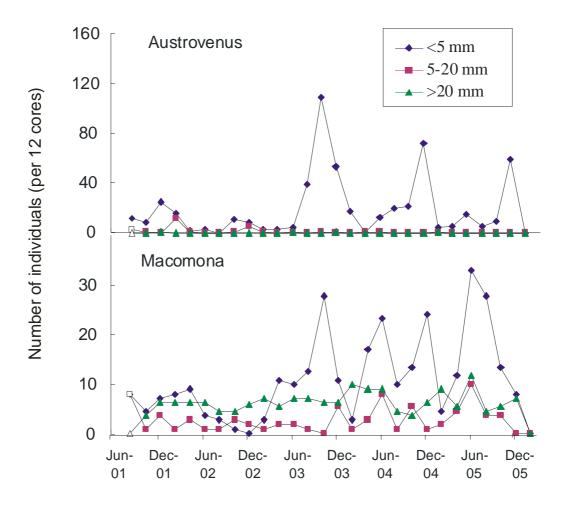
The abundance of different size classes of *Austrovenus* and *Macomona* found over time at site Whau.



4.2.4 Te Tokaroa Reef (Reef)

Despite this site's proximity to the relatively polluted Meola and Motions Creeks, the benthic taxa are diverse. Reef appears to have fewer surface deposit feeders and more suspension feeders, predators and grazers than the other sites. Abundances of *Austrovenus* are generally lowest at this site and, similar to HBV, consist predominantly of juveniles (Fig. 4 & 12). Of the monitored taxa, *Paphies, Arthritica, Anthopleura, Diloma, Exosphaeroma* and *Aonides* are rarely found at this site.

Figure 11:


Highest number of *Austrovenus* occurred at the Reef site in December – February during recruitment peaks. *Austrovenus* also exhibited longer-term trends in abundance, as did *Haminoea. Nucula* exhibits increasing abundances over the monitored period whereas abundances of *Nucula* decrease.

Heteromastus and *Nucula* (Fig. 11) both exhibited trends in abundance with *Heteromastus* increasing in density over the monitored period (from 0 – >100 individuals) and *Nucula* decreasing markedly in density from 900 – 3 individuals (Fig. 11). Most *Austrovenus* at this site are sized <5mm (Fig. 12), and the patterns of abundance are driven by year 1 juveniles. Few cockles remain to adulthood at this site. Abundances of *Macomona* are not high, but a mixed population is generally observed (Fig. 4 & 10), with juveniles most numerous during recruitment peaks. As noted at sites Whau and ShB, the size of recruitment peaks in *Austrovenus* and *Macomona* have increased over the last three years.

Figure 12:

The abundance of different size classes of *Austrovenus* and *Macomona* found over time at site Reef.

Aonides and *Glycera* were consistently present in low numbers and the abundance of the gastropod *Zeacumantus lutulentus* was variable. Of the remaining species, 4 exhibited annual patterns of recruitment, 6 exhibited multiyear patterns and two exhibited trends in abundance (Table 6). Highest number of *Arthritica* and *Haminoea* and *Austrovenus* occurred in December – February. *Austrovenus, Haminoea, Zeacumantus* (Fig. 11) and the polychaetes, *Macroclymenella, Aquilaspio, Euchone* sp. all exhibited multiyear cycles in recruitment (Table 6).

These multiyear patterns of abundance are reflected in changes to the dominant taxa (Table 9). While the most abundant taxa were relatively consistent for the first few years of sampling, the last year shows a marked change, such that *Nucula* is no longer the most abundant taxa at this site.

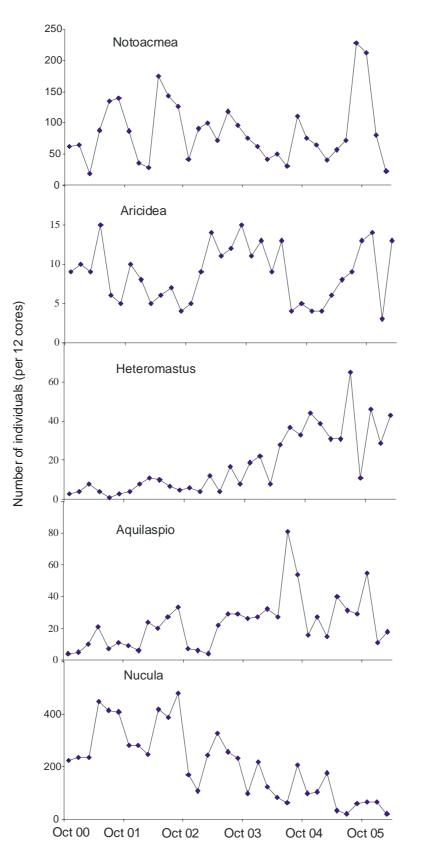
Table 9:

The three most abundant monitored taxa found over time at Reef.

Date	Most abundant	⇔	Least abundant
Oct-00	Nucula	Euchone	Aricidea
Oct-01	Nucula	Euchone	Aricidea
Oct-02	Nucula	Euchone	Aricidea
Oct-03	Euchone	Austrovenus	Nucula
Oct-04	Euchone	Heteromastus	Aricidea
Oct-05	Heteromastus	Euchone	Aricidea

4.2.5 Shoal Bay (ShB)

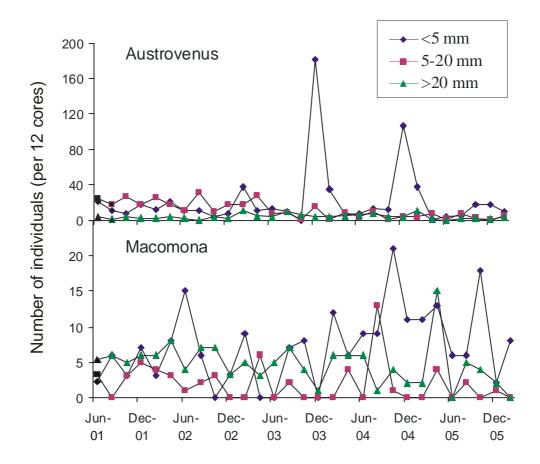
While *Nucula* was again the most abundant species over the first three years, abundances of *Nucula* have been declining at Shoal Bay over the last two-three years (Table 6, Fig. 13) similar to the trends in Nucula abundance at Whau and Reef. *Notoacmea* was frequently abundant, with *Austrovenus, Aricidea, Boccardia, Colurostylis, Euchone, Aonides* and *Aquilaspio* all being among the five most abundant taxa on more than one occasion. *Macomona* generally exhibited a mix of size classes (Fig. 14), while *Austrovenus* populations have been dominated by large recruitment peaks over the last three years and only low numbers of adults are found (Fig 14).


Table 10:

The three most abundant monitored taxa found over time at ShB.

Date	Most abundant	⇔	Least abundant
Oct-00	Nucula	Notoacmea	Boccardia
Oct-01	Nucula	Notoacmea	Aricidea
Oct-02	Nucula	Notoacmea	Aricidea
Oct-03	Nucula	Notoacmea	Aricidea
Oct-04	Nucula	Notoacmea	Euchone
Oct-05	Notoacmea	Boccardia	Euchone

Figure 13:


Abundances of *Notoacmea* at ShB exhibit a pronounced seasonal cycle, while abundances of *Aricidea* exhibit multiyear changes. *Heteromastus* and *Euchone* increased in abundance over the monitored period, whereas *Nucula* decreased in abundance.

Notoacmea, Nucula, Aonides and Austrovenus all exhibited seasonal cycles of abundance, although high abundances did not all occur at the same time of the year for all taxa. Moreover, while abundances of *Colurostylis* were variable within each year, multiyear cycles were indicated. Multiyear cycles were also indicated for *Aricidea*, *Anthopleura* and *Euchone*. Recruitment of juvenile *Austrovenus* also varied markedly between years with very high recruitment occurring December 2003 and December 2004 (Fig. 14). *Heteromastus* increased in abundance over the monitored period from a maximum of 8 individuals in the first year of sampling to over 30 individuals in the last year of sampling (Fig. 13). *Aquilaspio* showed exhibited a small increase in abundance over the monitoring period (Fig. 13).

Figure 14:

The abundance of different size classes of *Austrovenus* and *Macomona* found over time at site ShB.

4.3 Are species abundances exhibiting similar patterns at all sites?

Generally, correlation analysis revealed few similarities between patterns in abundances of taxa from different sites (correlation coefficients < 0.5) (Table 11). The highest number of correlations was found between sites located near to one another, even when trends in abundance were removed from the analysis. *Aquilaspio* showed distinct differences between inner and outer sites with strong correlations between HBV, HC and Whau and then between ShB and Reef.

Interestingly, some patterns of abundance that were similar were offset in time. While the majority of correlations were highest at zero lags, *Macrocylmenella, Austrovenus* and *Nucula* abundances were usually offset between sites, varying from 2 to 10 months. *Heteromastus* abundances at Whau and Reef, and *Austrovenus* at Whau and HBV were offset by 1.5 years. *Aricidea* abundances at HBV and HC and *Boccardia* at HBV and Reef were offset by 2 years.

It is difficult to isolate causes of abundance lags between sites. However, lags of whole years (e.g., *Aricidea* abundances at HBV and HC and *Boccardia* at HBV and Reef) are likely to be driven by site characteristics. Conversely, lags of months and part years (e.g., 2 to 10 months, 1.5 years) suggest a number of processes interacting across a number of scales.

Table 11:

Number of monitored taxa for which significant cross lag correlations were observed between sites. (a) all significant correlations, (b) correlations > 0.5.

А					В				
	HBV	HC	Reef	ShB		HBV	HC	Reef	ShB
HC	12				HC	5			
Reef	6	8			Reef	1	2		
ShB	9	6	10		ShB	1	2	5	
Whau	8	11	11	6	Whau	2	4	5	2

4.4 Have any changes in species over time led to changes in communities, or sites becoming more or less similar to each other?

4.4.1 Changes in site characteristics

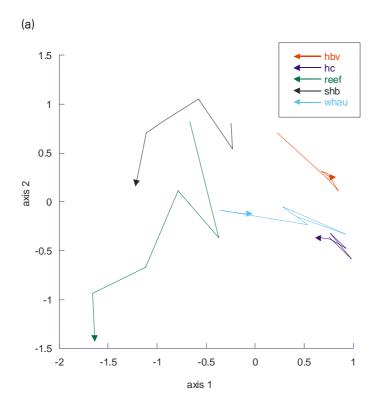
The sites initially formed three distinct groups along a gradient of decreasing fine sand (Nicolls et al. 2002). (1) Reef and Whau were predominantly fine sand with low mud and organic content and medium chlorophyll *a*. (2) ShB and HBV had less fine sand and proportionally more medium and coarse sediment, but were variable with respect to % mud and organic content. (3) HC had the lowest percentage fine sand and the highest % of mud and coarse sediment fractions. It also had the highest organic content and chlorophyll *a*.

Over time these groupings have changed (Fig. 3). (1) Reef and Whau have become more dissimilar, although this is being driven by increased variability over time at Reef in %mud, rather than a clear separation in site characteristics. These changes at Reef are unlikely to be associated with seagrass growth at the site, as this did not occur until December 2004. Moreover, when seagrass patches expanded into the Manukau site CB no community changes were observed. (2) After the first 1.5yrs sediment characteristics at HBV changed, with increased proportion of coarse fractions, while ShB did not change. (3) Over the first 5 years, increased % fine sand and mud was

observed at HC, making the site more similar to ShB. This site has continued to show changes over the last 1.5 yr associated with increased organic content.

4.4.2 Changes in communities

Initially, all sites were distinctly different, with HC and Whau being the most similar. This is still the case, with only two of the sites showing distinct changes in community structure over time (Fig 15a). The largest changes are occurring at Reef, where large decreases in *Nucula* and large increases in *Heteromastus* have been observed. While decreases in the abundance of *Nucula* have also occurred at Whau and ShB, *Nucula* was not the most dominant species at Whau and, at ShB, the magnitude of change has not been so marked. Again while *Heteromastus* is also increasing at ShB, the magnitude of the change is not so great as to move *Heteromastus* into a dominant position. Multivariate ordination based on presence absence data exhibited no strong changes over time at the sites (Fig 15b).


Trends in the abundance of the monitored species are apparent at all sites, although Whau and HC have more taxa displaying trends than the other sites (Table 6). At Whau, these do not result in strong changes in community structure because the relative abundance of the dominant taxa is largely maintained. Also within-year variability is high, and changes in abundance of all taxa are not occurring over the same period. At HC, none of the taxa exhibiting trends in abundance are dominant, the changes are generally small relative to with-in year variation and many taxa exhibit multiyear cycles.

There are some patterns in the trends in abundance. (1) *Heteromastus* is increasing in abundance at the two outer sites (ShB and Reef). (2) *Nucula* is decreasing in abundance at the three outer sites (ShB, Reef and Whau). (3) *Aquilaspio* is decreasing at the three inner sites (Whau, HC and HBV). (4) *Zeacumantus* and *Anthopleura* are decreasing/ increasing at the two inner sites (HC and HBV). These changes do not seem to be related to changes in sediment characteristics.

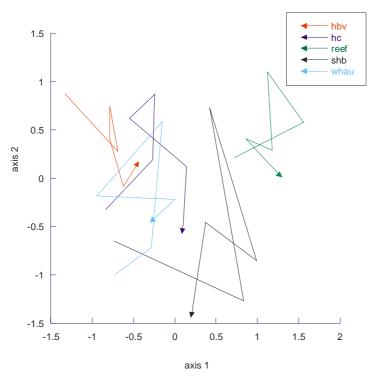

The differences between the site groupings and changes over time observed for the sediment characteristics and the community composition, as well as the lack of correlation between sediment characteristics and the changes in the 5 species noted in the previous paragraph, suggests that community composition is not being purely driven by our measured sediment characteristics. The two sites most similar in community composition are located on the same large intertidal flat that stretches between the entry of the Henderson Creek and the Whau River, suggesting that recruitment and dispersal dynamics may be playing a role.

Figure 15:

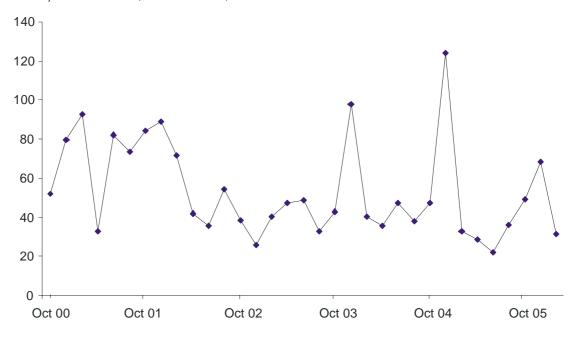
Multidimentional Scaling (MDS) plot of the community structure of each site during October 2000 - 2005 (a) using abundance data (b) presence/ absence data

Information useful to the Central
Waitemata modeling project

A crucial factor in the Central Waitemata modeling project is defining levels of bioturbation (i.e., the degree to which animals move sediment around) around the harbour, as bioturbation affects the calculation of sedimentation rates. Certain types of bioturbators also affect contaminant cycling, moving sediments up or down the sediment column. Bioturbators that move on the sediment surface can increase the potential for sediment resuspension, thus promoting the spread of contaminated sediment.

Bioturbation at each of the sites was determined by using functional characteristics to place taxa into a number of bioturbating categories: animals that maintain vertical burrows; animals that move sediment up or down the sediment column; surface bioturbators; and animals that move horizontally within the sediment. Size of the bioturbating organism will, together with density, affect bioturbation rates, so taxa were sorted into large (>2 cm longest dimension), medium (1 – 2 cm) and small (<1 cm). Depth of bioturbation was assessed on the basis of knowledge of functional characteristics and using horizontally segmented cores. Three categories were used: shallow (top 2 cm); medium (2 – 10 cm); and deep (2 – 15 cm). Numbers of taxa in all categories were calculated for each site in October. To investigate temporal variations in bioturbation, calculations were done for all taxa in each October and for all monitored species over the complete temporal series.

The density of bioturbators was lowest at SHB followed by Reef. Whau had high densities of bioturbators but these were mainly small. HbV and HC had the highest densities of bioturbators with HC having mainly large sized animals and HbV having mainly medium sized animals.


Differences also occurred between the sites in the types of bioturbators and the depths to which bioturbation occurred. HbV and Whau had few burrowers or animals working sediment vertically; most were animals that moved horizontally through the sediment. At HC bioturbators were mainly surface bioturbators. Reef and ShB both had more burrowers and animals vertically moving sediment. All sites had animals that bioturbated down to at least 15 cm, but densities of deep bioturbators were highest at Reef, ShB and Whau. Surface bioturbators dominated at HC and Whau.

Perhaps the most important information that this monitoring programme can offer the Central Waitemata modeling programme is an estimate of the degree to which bioturbation can vary temporally. Both seasonal cycles and multiyear cycles were observed in the densities of bioturbators at the sites (see Figure 15 for an example). The degree of temporal variation observed can be utilized in the models to determine likely ranges of effect.

38

Figure 15

Conclusions and recommendations

While slight changes in sediment characteristics have occurred at all sites over the monitored period, no large, uni-directional shifts were recorded (e.g., a site changing from being predominantly sandy to sandy mud). Moreover, these changes do not appear to have affected the benthic communities present at each site. Rather, similarities among adjacent sites, particularly Henderson Creek and the Whau River, suggest that recruitment and dispersal dynamics may be key drivers of biological change.

Five taxa displayed trends in abundance. (1) *Heteromastus* is increasing in abundance at the two outer sites (ShB and Reef). (2) *Nucula* is decreasing in abundance at the three outer sites (ShB, Reef and Whau). (3) *Aquilaspio* is decreasing at the three inner sites (Whau, HC and HBV). (4) *Zeacumantus* is decreasing at the two inner sites (HC and HBV). (5) *Anthopleura* is increasing at the two inner sites (HC and HBV). (5) *Anthopleura* is increasing at the two inner sites (HC and HBV). (5) *Anthopleura* is increasing at the two inner sites (HC and HBV). Furthermore, while correlations between the Southern Oscillation Index and abundances are strong for *Heteromastus*, *Nucula* and *Aquilaspio*, the time series dynamic models did not remove the observed trends with time, except for *Heteromastus* at Reef.

It is important to note that monitoring has only been going for 5 ½ years. Apparent, uni-directional trends in abundance may therefore turn out to be components of longerterm cycles. Long-term ecological monitoring in Manukau Harbour shows many species, such as *Anthopleura* and *Aquilaspio*, display cycles of 6 – 9 years. Declines in *Nucula* populations have also been noted in the Mahurangi, and there is a reasonable likelihood that the changes observed in this species reflect a cyclic population dynamic rather than continuous loss. For *Zeacumantus*, which is rare at monitored sites in the Manukau and Mahurangi, it is difficult to predict whether the observed changes are part of natural cycles.

Based on available species sensitivities information, the changes in abundance seem unlikely to be associated with either increased sedimentation or contamination. The reasons for this are:

- Changes is sensitive taxa would be expected to occur before strong changes were observed in relatively robust taxa such as *Heteromastus* and *Nucula*.
- Relatively sensitive taxa such as *Anthopleura* and *Aquilaspio* would both be expected to respond negatively to sediments and contaminants. However, *Anthopleura* abundance has increased at some sites, while *Aquilaspio* has decreased.

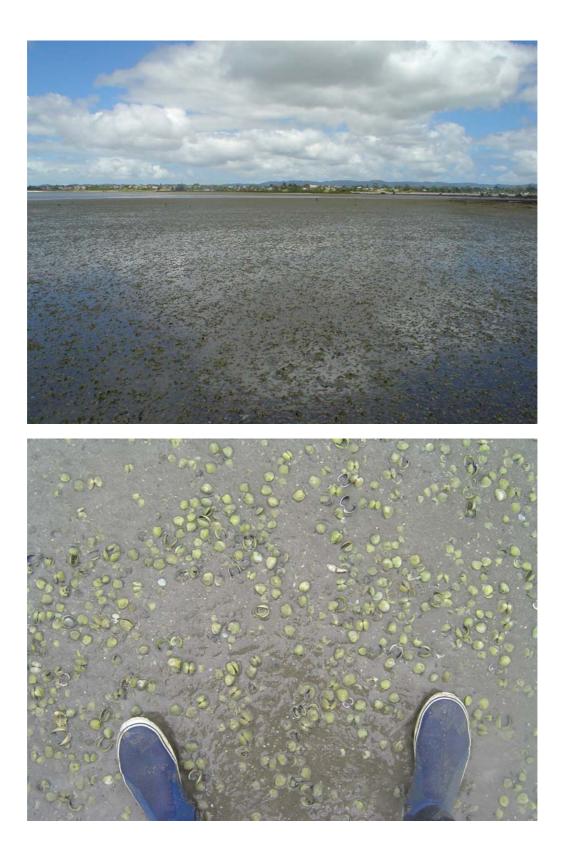
Having said that, a lack of good sensitivity information makes the assessment of cause and effect difficult. Information obtained from ARC and NIWA research on toxicology and community health will assist with this.

While a number of invasive species have been recorded in the Waitemata only 6 invasive species were found over the monitored period at the monitored sites (*Musculista senhousia*; *Theora lubrica*; *Chaetopterus* sp. A , *Pseudopolydora corniculata*, *Monocorophium acherusicum* & *M. sextonae*). However, the lack of

temporal consistency or increasing densities recorded for these suggest they are unlikely to pose a problem.

Further changes at Reef may occur, associated with seagrass growth at the site. Although previous observations in Manukau at site CB found no effect of seagrass on community structure, we recommend, if seagrass growth continues, that samples taken in and out of seagrass are processed separately, and measurements are made of the area of the site covered by seagrass.

7 Plates


Plate 1.

The Hobsonville area with a close-up of site HBV.

Plate 2.

The sandflat near Henderson Creek area with a close-up of site HC.

Plate 3.

The sandflat near Whau River with a close-up of site Whau.

Plate 4.

The sandflat near Te Tokaroa Reef with close-ups of sediment in February 2006, Seagrass patch in February 2006 and diatom covered sediment in June 2005.

Plate 5.

A sandflat in Shoal Bay with a close-up of site ShB.

Acknowledgements

Thanks to Mike McMurtry, Marcus Cameron, Dr Shane Kelly and others from ARC for their help in the field.

References

- Anderson, M.J.; Hewitt, J.E.; Thrush, S.F. (2003). Using a multivariate statistical model to define community health. Prepared for the Auckland Regional Council, NIWA Project ARC02221.
- Berkenbusch, K.; Thrush, S.; Hewitt, J.; Ahrens, M.; Gibbs, M.; Cummings, V. (2001). Impact of thin deposits of terrigenous clay on benthic communities. Report for Auckland Regional Council, ARC01269.
- Gibbs, M.; Hewitt, J. (2004). Macrofaunal communities: A synthesis of research studies for Auckland Regional Council. Report for Auckland Regional Council, ARC04210.
- Green, M., Timperley, M., Collins, R. & Williamson, R. B. (2004). Upper Waitemata Harbour Contaminant Study: Summary. ARC Technical Publication 250, pp. 49. Auckland Regional Council, Auckland, New Zealand.
- Hewitt, J.E. (2000). Design of a State of the Environment monitoring programme for the Auckland Marine Region. Report for Auckland Regional Council, ARC00205.
- Hewitt, J.E.; Thrush, S.F.; Pridmore, R.D.; Cummings, V.J. (1994). Ecological monitoring programme for Manukau Harbour: Analysis and interpretation of data collected October 1987 – February 1993. Prepared for Environment and Planning Div. ARC.
- Hewitt, J. E., R. D. Pridmore, S. F. Thrush, and V. J. Cummings. (1997). Assessing the short-term stability of spatial patterns of macrobenthos in a dynamic estuarine system. Limnology and Oceanography 42:282-288.
- Kelly, S. (2004). Contaminant monitoring in shellfish: results of the 2003 shellfish contaminant monitoring programme. ARC Technical Publication 273, pp. 69. Auckland Regional Council, Auckland, New Zealand.
- Mook, D.H.; Hoskin, C.M. (1982). Organic determination by ignition: caution advised. Estuarine Coastal and Shelf Science 15: 697-699.
- Nicholls, P.; Hewitt, J.E.; Hatton, S. (2002). Waitemata Harbour Ecological Monitoring Programme – results from the first year of sampling, October 2000 - 2001. Report for Auckland Regional Council, ARC01271.
- Nicholls, P.; Halliday, J.; Hewitt, J. (2004). Effects of suspended sediment concentrations on suspension and deposit feeding macofauna. Report for Auckland Regional Council, ARC01271.

- Norkko, A.; Talman, S.; Ellis, J.; Nicholls, P.; Thrush, S. (2001). Macrofaunal sensitivity to fine sediments in the Whitford embayment. Report for Auckland Regional Council, ARC01266/2.
- Reed, J. & Webster, K. (2004). Marine Sediment Monitoring Programme 2003 Results. ARC Technical Publication 146, pp. TP 146. Auckland Regional Council, Auckland.
- Williamson, R. B. & Kelly, S. (2003). Regional Discharges Project Marine Receiving Environment Status Report 2003. ARC Technical Publication 203, pp. 53. Auckland Regional Council, Auckland, New Zealand.
- Williamson, R. B. (2004). Regional Discharges Project sediment quality data analysis. ARC Technical Publication 245, pp. 37. Auckland Regional Council, Auckland, New Zealand.

10 Appendices

10.1 Appendix 1: Sensitivity of monitored taxa to sediments.

Summary of monitored taxa's sensitivity to increases in fine sediment, both as sedimentation and suspended sediment (SS), collated from Norkko et al. (2001), Berkenbusch et al. (2001), Nicholls et al. (2003) and Gibbs & Hewitt (2004).

Order	Таха	Info on sensitivity to fine sediment	Sensitivity ranking	
Bivalvia	Arthritica bifurca	In field surveys, this species was found to prefer sites with a medium proportion of silt/clay, although this data was based on low abundances	low	
	Austrovenus stutchburyi	Sensitive in field surveys and medium levels of SS.	medium	
		Found in sed with 0-60% silt clay, prefers 5-10% silt/clay.		
		Sensitive to burial by thin layers (0.5-1.5 cm) of terrestrial clay.		
	Macomona liliana	Sensitive to high levels of SS. Macomona survival was decreased in high SS (750 mgL-1 lab trials.	sensitive	
		In field surveys, this species was found to prefer sites with a low silt/clay proportion (<5%), but occurs in sites with up to 60% fines.		
	Nucula hartvigiana	Partially sensitive to burial by thin layers (0.5-1.5 cm) of terrestrial clay.	medium	
		In field surveys, this species was found to prefer sites with a low silt/clay proportion (<5%), but occurs at a wide range of sediment types (0-60%).		
	Paphies australis	Sensitive to burial by thin layers (0.5-1.5 cm) of terrestrial clay.	highly sensitive	
		Species prefers sites with a low proportion of silt/clay. Only occurs in sites with les than 5% fines		
Cnidaria	Anthopleura aureoradiata	In field surveys, this species was found to prefer sites with a low silt/clay proportion (5-10%), but occurs at a slightly wide range of sediment types (0-15%).	highly sensitive	
Cumacea	Colurostylis lemurum	In field surveys, this species was found to prefer sites with a low silt/clay proportion (<5%), but occurs at a wide range of sediment types (0-60%).	sensitive	

Gastropoda	Diloma subrostrata	In field surveys, this species was found to prefer sites with a low silt/clay proportion (5-10%), but occurs at a slightly wide range of sediment types	highly sensitive
	Haminoea zelandiae	(0-15%). No info	
	i iaitiii iuca zelatiulae		
	<i>Notoacmea</i> sp.	In field surveys, this species was found to prefer sites with a low silt/clay proportion (<5%), but occurs at a slightly wide range of sediment types (<10%).	highly sensitive
	Zeacumantus lutulentus	Not sensitive in lab trials of SS	low
Isopoda	Exosphaeroma spp.	No info	
Polychaeta	Aonides oxycephala	V. sensitive in field surveys	highly sensitive
		Prefers sediment with 0-5% silt/clay.	
		Sensitive to burial by thin layers (0.5-1.5 cm) of terrestrial clay.	
	Aquilaspio aucklandica	Sensitive to burial by thin layers (0.5-1.5 cm) of terrestrial clay.	sensitive
		In field surveys this species showed no preference for sites with a particular proportion of silt/clay.	
	<i>Aricidea</i> sp.	In field surveys, this species was found to occur at sites with a wide range of sediment types, but preferred sites with a mud content less than 70%.	low
	Boccardia syrtis	Sensitive to high levels of SS (750 mg/l_L) in lab experiments Boccardia stopped feeding under high SS concentrations.	medium
		Not sensitive to burial by thin (0.5-1.5 cm) layers of terrestrial clay, but sensitive to thick layers (3-9 cm).	
		In field surveys, this species was found to prefer sites with less than 10-15% fines.	
	Euchone sp.	No info	
	Glycera sp.	Not sensitive to burial by thick layers (3- 9 cm) of terrestrial clay.	low
		In field surveys, this species was found to occur at sites with a wide range of sediment types.	
	Heteromastus filiformis	In field surveys, this species was found to occur at sites with a wide range of sediment types.	low
	Macroclymenella stewartensis	In field surveys, this species was found to occur at sites with a wide range of sediment types (0-60%), although its density was highest at sites with a low proportion of silt/clay (10-15%).	medium

10.2 Appendix 2: Sensitivity of species to contaminants

The form of response observed for the monitored taxa to sediment concentrations of copper (Cu), zinc (Zn) and lead (Pb). NR = no response, L = linear, T = threshold, B = bell shaped, unimodal response, low abundance increasing to a maximum then decreasing again, NA = not available.

Order	Таха	Cu S	Sensitivity	Zn Se	ensitivity	Pb Se	ensitivity		
		Response shape and max density range (PPM)							
Bivalvia	Arthritica bifurca	В	10-35	В	70-220	В	20-80		
	Austrovenus stutchburyi	В	10-30	В	70-160	В	20-50		
	Macomona liliana	В	5-10	В	20-70	В	10-20		
	Nucula hartvigiana	В	15-25	В	70-170	В	25-50		
	Paphies australis	NA		NA		NA			
Cnidaria	Anthopleura aureoradiata	NA		NA		NA			
Cumacea	Colurostylis lemurum	NA		NA		NA			
Gastropoda	Diloma subrostrata	NA		NA		NA			
	Haminoea zelandiae	NA		NA		NA			
	Notoacmea sp.	NA		NA		NA			
	Zeacumantus lutulentus	NA		NA		NA			
Isopoda	Exosphaeroma spp.	NA		NA		NA			
Polychaeta	Aonides oxycephala	В	15-25	В	70-120	В	20-40		
	Aquilaspio aucklandica	L	<5	L	<50	L	<5		
	Aricidea sp.	L	<10	L	<20	L	<10		
	Boccardia syrtis	L	<5	L	<50	L	<10		
	Euchone sp.	NA		NA		NA			
	<i>Glycera</i> sp.	NA		NA		NA			
	Heteromastus filiformis	NA		NA		NA			
	Macroclymenella stewartensis	L	<10	L	<50	L	<10		

Taxon	Species	Family	Probable native range
Algae	Codium fragile ssp. tomentosoides	Codiaceae	Northwest Pacific (adventive in Africa, the northeastern and northwestern Atlantic, North and South America, the Mediterranean, eastern Pacific, Australia
Algae	Colpomenia durvilleae	Scytosiphonaceae	Northern Pacific N. Japan - central California
Algae	Cutleria multifida	Cutleriaceae	Cosmopolitan in temperate seas
Algae	Hydroclathrus clathratus	Scytosiphonceae	Cosmopolitan temperate & tropical seas
Algae	unidentified species	Solieriacae	Probably Southeast Asia
Algae	Undaria pinnatifida	Alariaceae	Japan, Korea, parts of China
Amphipoda	Chelura terebrans	Cheluridae	Cosmopolitan
Amphipoda	Corophium acutum	Corophiidae	Coasts of Europe; now circumglobal
Amphipoda	Ericthonius pugnax	Ischyroceridae	South East Asia (adventive in Australia)
Angiospermae	Spartina alterniflora	Poaceae	Eastern USA
Angiospermae	Spartina anglica	Poaceae	Britain
Angiospermae	Spartina townsendi	Poaceae	Britain
Ascidiacea	Asterocarpa cerea	Styelidae	South Australia & Sub-Antarctica
Ascidiacea	Botrylloides magnicoecum	Styelidae	Southern African coasts (now adventive on coasts of Australia, New Zealand, an the Mediterranean)
Ascidiacea	Botryllus schlosseri	Styelidae	Atlantic
Ascidiacea	Ciona intestinalis	Cionidae	Europe?
Ascidiacea	Corella eumyota	Rhodosmatidae	Southern & western Australia
Ascidiacea	Cystodytes dellechiajei	Polycitoridae	Warm water cosmopolitan
Ascidiacea	Didemnum "candidum"	Didemnidae	Now cosmopolitan
Ascidiacea	Diplosoma listerianum	Didemnidae	South Africa, now cosmopolitan
Ascidiacea	Styela plicata	Styelidae	Cosmopolitan
Ascidiacea	Styela clava	Styelidae	Japan, Korea, northern China, (adventive in NW Europe, California, Eastern USA, southern Australia)
Ascidiacea	Aplidium phortax	Polyclinidae	Northeastern Australia, Solomon Islands
Ascidiacea	Botrylloides leachii	Styelidae	English Channel
Cirripedia	Balanus amphritrite	Balanidae	Cosmopolitan warm temperate & tropica seas
Cirripedia	Balanus trigonus	Balanidae	Cosmopolitan warm temperate & tropica seas
Cirripedia	Balanus variegatus	Balanidae	Indo-Malaysia to Australia
Cnidaria	Coryne pusilla	Corynidae	All European coasts, Mediterranean; nov also South Africa, East Asia
Cnidaria	<i>Diadumene lineata</i> (Sagartia luciae)	Diadumenidae	Cosmopolitan
Cnidaria	Ectopleura crocea	Tubulariidae	NE USA, Europe Japan, NE Pacific
Cnidaria	Eudendrium ritchiei	Eudendriidae	South Africa
Cnidaria	Hoplangia durotrix	Caryophyllidiidae	NE Atlantic
Cnidaria	Pennaria disticha	Pennariidae	Europe; now circum- global in warm wat
Cnidaria	Tethocyathus cylindraceus	Caryophylliidae	W. Atlantic

10.3 Appendix 3: Invasive species found in Waitemata Harbour

Cnidaria Cnidaria Cnidaria	Bougainvillia muscus		
Cnidaria Cnidaria		Bougainvillidae	North Atlantic
Cnidaria	Clytia hemisphaerica	Campanulariidae	Atlantic
	Obelia bidentata	Campanulariidae	North Atlantic
Decapoda	Charybdis japonica	Portunidae	Japan, Korea, Northern China, Malaysia
Decapoda	Merocryptus lambriformis	Leucosidae	Southern Australia (adventive Japan)
Decapoda	Pilumnopeus serratifrons	Xanthidae	South Australia
Decapoda	Plagusia chabrus	Grapside	West Indo-Pacific
Decapoda	Pyromaia tuberculata	Majidae	West coast North America (adventive Japan)
Entoprocta	Amathia distans	Vesiculariidae	Atlantic coast of America, North Carolina to Brazil
Entoprocta	Anguinella palmata	Nolellidae	Southern Europe
Entoprocta	Bowerbankia gracilis	Vesiculariidae	Eastern North America
Entoprocta	Bugula flabellata	Bugulidae	Probably European waters
Entoprocta	Bugula neritina	Bugulidae	Mediterranean and southern Europe
Entoprocta	Bugula stolonifera	Bugulidae	Europe
Entoprocta	Buskia nitens	Buskiidae	European seas
Entoprocta	<i>Celloporaria</i> sp. 1	Lepraliellidae	?
Entoprocta	Conopeum seurati	Electridae	Caspian Sea, Sea of Azov, Mediterranear North Africa
Entoprocta	Cryptosula pallasiana	Cryptosulidae	Cosmopolitan
Entoprocta	Electra tenella	Electridae	Atlantic coast of Florida, Puerto Rico, Brazil
Entoprocta	Tricellaria porteri	Candidae	Southern Australia or Japan, now cosmopolitan
Entoprocta	Watersipora arcuata	Watersiporidae	California to Galapagos Islands
Entoprocta	Watersipora subtorquata	Watersiporidae	Brazil, Bermuda, Cape Verde Islands
Entoprocta	Zoobotryon verticillatum	Vesiculariidae	Mediterranean
Isopoda	Limnoria tripunctata	Limnoriidae	Cosmopolitan warm to tropical waters
Mollusca	Crassostrea gigas	Ostreidae	Japan, Korea and vicinity (adventive: Pacific & Atlantic coast of North America, Hawaii, Okinawa, New South Wales)
Mollusca	Cuthona alpha	Tergipediidae	Japan (adventive: Pacific coast North America)
Mollusca	Cuthona beta	Tergipediidae	Japan
Mollusca	Eubranchus agrius	Eubranchidae	Chile
Mollusca	Limaria orientalis	Limidae	Japan, Philippines & widely distributed in Indo Pacific
Mollusca	Lyrodus mediolobatus	Teredinidae	Tropical cosmopolitan
Mollusca	Lyrodus pedicellatus	Teredinidae	Tropical to temperate seas, cosmopolitan
Mollusca	<i>Microtralia</i> sp.= M. <i>insularis</i>	Ellobiidae	Unknown
Mollusca	Musculista senhousia	Mytilidae	Eastern Asia from Singapore to Siberia
Mollusca	Okenia pellucida	Goniodorididae	Australia
Mollusca	Okenia plana	Goniodorididae	Cosmopolitan
Mollusca	Polycera hedgpethi	Polyceridae	Unknown, now almost cosmopolitan
Mollusca	Thecacera pennigera	Polyceridae	Unknown; temperate cosmopolitan (perhaps originally temperate latitude of eastern South America)
Mollusca	Theora lubrica	Semelidae	Japan, the tropical Pacific, Indonesia, Thailand, China Philippines and Australia

Taxon	Species	Family	Probable native range
Polychaeta	Ficopomatus enigmaticus	Serpulidae	Obscure, European coastal waters
Polychaeta	Hydroides elegans	Serpulidae	Unknown, now cosmopolitan
Polychaeta	Hydroides ezoensis	Serpulidae	Japan (adventive in northeast Atlantic, Australia)
Polychaeta	Polydora cornuta	Spionidae	Atlantic Coast North America European coastal waters
Polychaeta	Polydora haswelli	Spionidae	Australia
Polychaeta	Pseudopolydora corniculata	Spionidae	Taiwan
Polychaeta	Chaetopterus sp. A	Chaetopteridae	Unknown
Porifera	Clathrina coriacea	Clathrinidae	North Atlantic, Mediterranean, Japan Indian Ocean, Arctic, Antarctic
Porifera	Cliona celata	Clionidae	Arctic, Atlantic coasts of Europe & North America, West Indies, Indian Ocean, Re Sea, Malaysia, Australia, New Guinea
Porifera	Dendya poterium	Clathrinidae	Europe, circumglobal
Porifera	Halichondria panicea	Halichondriidae	Europe, cosmopolitan
Porifera	Halisarca dujardini	Halisarcidae	Europe, cosmopolitan
Porifera	Hymeniacidon perleve	Hymeniacidonidae	Europe, cosmopolitan
Porifera	Tethya aurantium	Tethyidae	California
Porifera	Haliclona heterofibrosa	Haliclonidae	North-eastern Atlantic
Porifera	Plakina monolopha	Plakinidae	Mediterranean
Protozoa	Siphogenerina raphanus	Siphogenerinoididae	Cosmopolitan
Teleostei	Acentrogobius pflaumii	Gobiidae	Japan, Korea, Taiwan, Philippines (adventive in Australia)
Teleostei	Arenigobius bifrenatus	Gobiidae	Southern Australia
Teleostei	Omobranchus anolius	Blenniidae	Southern Australia

10.4 Appendix 4: Sediment characteristics

site	date	%clay	%silt	%mud	%fine	%	%coarse	%gravel	%organics	chla
					sand	medium	sand			ს g/g
HBV	Oct-00	0.48	7.65	8.13	74.16	12.20	4.01	1.50	0.95	10.26
	Dec-00	0.05	5.17	5.22	78.45	10.74	2.33	3.26	1.05	13.36
	Feb-01	1.08	4.41	5.49	75.11	14.43	2.88	2.09	1.16	13.62
	Apr-01	1.8	4.84	6.64	66.93	18.26	4.97	3.2	1.29	17.77
	Jun-01	1.38	2.59	3.97	67.83	18.27	5.19	4.75	1.18	18.79
	Aug-01	1.20	4.46	5.66	77.59	12.67	2.66	1.43	1.15	17.5 ⁻
	Oct-01	1.49	3.83	5.32	73.67	14.90	4.02	2.09	0.81	16.50
	Dec-01	1.60	4.42	6.02	71.49	15.98	2.73	3.78	0.80	12.38
	Feb-02	1.80	3.24	5.03	71.49	13.79	4.96	4.72	1.67	11.2 ⁻
	Apr-02	0.85	1.02	1.88	46.32	45.28	5.92	0.60	1.14	17.18
	Jun-02	0.69	0.69	1.38	48.61	42.09	5.58	2.34	1.17	18.09
	Aug-02	0.32	0.49	0.81	46.19	40.48	9.45	3.07	2.43	15.80
	Oct-02	0.50	1.49	1.99	54.79	31.31	8.15	3.75	3.73	13.98
	Dec-02	1.60	0.27	1.86	58.28	32.23	4.65	2.97	1.25	12.58
	Feb-03	1.70	1.06	2.76	53.54	31.54	8.33	3.82	1.12	12.2
	Apr-03	0.00	2.05	2.05	55.95	33.42	7.65	0.92	1.39	17.7
	Jun-03	1.05	1.05	2.10	56.44	24.44	13.32	3.69	1.17	10.7
	Aug-03	0.00	1.29	1.29	60.15	31.61	6.09	0.86	0.78	11.2
	Oct-03	0.78	0.78	1.55	50.07	39.00	7.84	1.53	0.78	7.97
	Dec-03	0.00	1.50	1.50	47.68	43.56	7.09	0.17	0.83	14.1
	Feb-04	0.00	1.85	1.85	59.54	31.24	5.70	1.67	1.11	12.8
	Apr-04	0.00	2.67	2.67	49.60	32.00	5.75	9.98	3.38	11.2
	Jun-04									7.98
	Aug-04	2.32	1.55	3.87	56.69	33.33	6.10	0.00	0.52	18.04
	Oct-04	1.97	0.98	2.95	52.05	25.78	5.87	13.36	1.75	10.7
	Dec-04	2.40	0.00	2.40	48.99	39.52	8.70	0.38	2.19	15.3
	Feb-05	2.55	1.28	3.83	56.71	32.41	6.53	0.52	6.40	10.3
	Apr-05	1.30	2.59	3.89	49.48	33.58	7.08	5.97	1.07	12.6
	Jun-05	2.25	2.25	4.50	54.52	33.01	7.30	0.67	1.29	16.2
	Aug-05	2.46	0.99	3.45	56.32	34.15	5.67	0.41	1.12	15.3
	Oct-05	1.65	0.47	2.12	54.51	36.31	6.86	0.20	1.53	17.5
	Dec-05	0.98	0.00	0.98	44.21	42.33	10.71	1.76	1.75	10.6
	Feb-06	1.61	1.61	3.22	63.63	36.18	6.78	0.18	1.87	11.0
HC	Oct-00	0.43	3.57	4.00	55.08	23.92	9.36	7.64	1.61	9.53
	Dec-00	0.5	1.31	1.81	48.81	40.02	7.77	1.59	1.89	19.8
	Feb-01	0.45	1.92	2.37	50.99	37.74	8.05	0.85	1.75	17.9
	Apr-01	0.17	1.26	1.43	55.75	26.83	5.08	10.9	2.66	26.1
	Jun-01	0.57	1.47	2.04	58.03	31.22	7.96	0.74	2.65	29.6
	Aug-01	0.49	2.97	3.46	67.19	22.95	5.19	1.20	1.50	18.8

Particle size as gravimetric %, % organics calculated from loss on ignition, and chlorophyll *a* (chla). June 2004 samples were lost prior to analysis.

site	date	%clay	%silt	%mud	%fine	%	%coarse	%gravel	%organics	chla
		-			sand	medium	sand	-	-	ს g/g
	Oct-01	0.53	1.76	2.30	58.56	30.63	7.43	1.08	1.46	21.67
	Dec-01	0.37	1.80	2.17	47.88	35.95	7.65	6.34	1.10	23.60
	Feb-02	0.13	3.53	3.66	52.76	25.84	11.42	6.33	2.55	16.58
	Apr-02	0.00	4.40	4.40	75.51	13.56	5.00	1.53	2.11	29.57
	Jun-02	3.15	0.00	3.15	74.86	15.05	3.82	3.12	2.08	26.77
	Aug-02	0.48	2.09	2.57	66.94	23.80	4.61	2.09	2.32	22.11
	Oct-02	3.73	2.66	6.39	75.07	13.30	3.24	2.00	2.04	22.49
	Dec-02	3.25	3.25	6.49	64.35	12.43	2.39	14.33	1.80	26.04
	Feb-03	2.51	3.35	5.86	72.52	13.85	4.06	3.70	1.77	29.99
	Apr-03	4.23	2.82	7.05	69.26	15.36	3.74	4.58	0.85	23.38
	Jun-03	3.78	1.89	5.67	35.11	52.55	3.16	3.50	1.19	31.70
	Aug-03	2.85	0.95	3.81	75.80	15.16	4.10	1.13	1.19	27.98
	Oct-03	2.83 0.83	5.42			12.42	2.70		1.90	
				6.26 8.47	77.57 74.10			1.05 1.44		20.34
	Dec-03	4.62	3.85	8.47	74.10	13.75	2.24	1.44	1.81	16.53
	Feb-04	3.13	4.70	7.83	74.91	12.75	3.05	1.46	1.92	23.81
	Apr-04	3.67	5.50	9.17	74.96	12.51	1.97	1.39	0.89	27.98
	Jun-04									18.80
	Aug-04	5.11	1.28	6.38	73.89	12.39	5.31	2.02	0.34	24.09
	Oct-04	4.62	2.77	7.39	71.92	17.67	3.03	0.00	2.85	19.92
	Dec-04	8.98	1.28	10.26	72.81	12.12	3.44	1.38	3.62	38.62
	Feb-05	2.67	4.46	7.13	75.56	12.19	2.51	2.60	4.74	37.79
	Apr-05	3.96	5.28	9.23	74.70	12.55	2.84	0.67	3.00	31.27
	Jun-05	3.93	1.57	5.50	77.36	13.39	3.25	0.50	2.37	25.63
	Aug-05	5.65	1.13	6.78	72.12	13.48	5.20	2.42	2.21	32.94
	Oct-05	5.21	4.26	9.47	77.16	10.86	2.01	0.49	2.24	18.41
	Dec-05	4.46	0.74	5.20	77.40	11.77	3.55	2.07	3.34	27.47
	Feb-06	0.47	5.64	6.11	76.45	14.29	2.44	0.72	2.18	16.28
Reef	Oct-00	0.59	3.50	4.09	91.80	3.77	0.28	0.06	0.90	7.28
	Dec-00	1.12	3.25	4.37	93.12	1.79	0.29	0.43	0.92	11.12
	Feb-01	1.17	4.22	5.39	90.81	2.78	0.18	0.85	1.09	10.51
	Apr-01	0.24	3.02	3.26	92.07	3.24	0.23	1.2	1.13	12.74
	Jun-01	1.04	3.87	4.91	91.43	2.78	0.19	0.68	1.26	15.02
	Aug-01	0.91	5.28	6.19	87.22	5.02	0.14	1.43	1.16	10.94
	Oct-01	0.67	2.76	3.43	89.44	5.21	0.26	1.67	0.74	10.54
	Dec-01	1.39	1.81	3.20	93.76	2.87	0.11	0.06	1.35	6.29
	Feb-02	0.32	2.58	2.90	87.20	8.37	0.92	0.62	1.02	19.31
	Apr-02	2.13	1.83	3.96	92.37	3.25	0.17	0.25	1.52	17.64
	Jun-02	1.98	3.30	5.27	91.51	3.11	0.10	0.00	1.14	12.65
	Aug-02	3.11	4.36	7.47	89.26	3.00	0.23	0.04	1.62	15.64
	Oct-02	3.63	1.45	5.08	92.25	1.67	0.11	0.89	1.04	10.46
	Dec-02	1.85	2.16	4.01	93.73	1.27	0.24	0.75	2.01	10.03
	Feb-03	1.91	1.91	3.82	93.32	2.56	0.19	0.12	1.13	7.24
		1 26	1.60	3.46	91.96	3.72	0.36	0.50	1.00	9.60
	Apr-03	1.86				7 4 4	0.00	0.00	0.00	
	Apr-03 Jun-03 Aug-03	0.94 7.65	4.72 0.00	5.67 7.65	87.22 89.41	7.11 2.59	0.00 0.27	0.00 0.07	2.00 0.99	11.92 8.47

site	date	%clay	%silt	%mud	%fine	%	%coarse	%gravel	%organics	chla
		,			sand	medium	sand	U U	J	ს g/g
	Dec-03	0.79	8.65	9.44	88.41	2.08	0.07	0.00	1.09	6.52
	Feb-04	1.55	6.19	7.74	89.12	2.97	0.11	0.06	1.24	6.74
	Apr-04	2.12	3.18	5.30	90.98	3.36	0.19	0.16	7.22	7.37
	Jun-04									8.69
	Aug-04	6.12	1.53	7.65	86.56	2.84	0.55	2.40	0.50	9.90
	Oct-04	4.85	1.62	6.47	91.82	1.67	0.04	0.00	1.20	5.36
	Dec-04	2.59	0.43	3.02	94.55	2.26	0.06	0.12	2.16	10.99
	Feb-05	3.67	0.00	3.67	94.85	1.15	0.29	0.04	1.78	7.91
	Apr-05	3.56	4.57	8.13	89.85	1.90	0.00	0.13	1.68	7.83
	Jun-05	4.04	2.69	6.74	87.26	3.93	0.27	1.81	1.28	6.76
	Aug-05	4.45	5.56	10.01	87.09	2.53	0.28	0.10	1.48	10.39
	Oct-05	2.65	4.97	7.61	90.31	1.90	0.11	0.07	1.64	18.45
	Dec-05	3.60	6.40	10.00	87.81	2.03	0.11	0.06	1.93	6.40
	Feb-06	3.00	3.85	6.85	91.58	1.32	0.23	0.02	1.43	7.93
ShB	Oct-00	0.13	3.33	3.46	78.71	14.11	2.46	1.26	0.63	5.23
	Dec-00	0.42	1.74	2.16	68.32	24.91	1.96	2.65	0.64	8.78
	Feb-01	0.46	1.27	1.73	67.55	28.84	0.87	1.01	0.27	4.87
	Apr-01	0.09	1.59	1.68	74.45	21.83	0.64	1.41	0.91	7.04
	Jun-01	0.37	1.17	1.54	72.98	22.83	1.31	1.35	0.49	10.29
	Aug-01	0.77	2.24	3.00	71.78	20.01	1.57	3.64	0.54	7.03
	Oct-01	12.36	0.65	13.01	63.30	22.43	0.70	0.56	0.48	10.72
	Dec-01	0.96	0.67	1.63	62.87	20.93	0.55	14.01	1.05	11.10
	Feb-02	0.68	2.91	3.59	78.72	15.86	1.08	0.76	0.76	10.53
	Apr-02	0.19	1.31	1.49	77.08	17.17	1.90	2.36	0.62	10.03
	Jun-02	0.50	1.66	2.15	67.64	25.86	2.01	2.34	0.73	8.19
	Aug-02	2.34	0.00	2.34	67.51	25.94	2.72	1.50	0.69	10.67
	Oct-02	2.80	0.25	3.06	80.84	11.70	3.33	1.07	0.81	7.79
	Dec-02	0.47	0.10	0.58	60.27	25.83	8.71	4.61	0.84	8.48
	Feb-03	0.18	0.55	0.74	53.62	37.54	5.03	3.07	0.23	6.45
	Apr-03	0.00	1.56	1.56	69.27	23.72	2.63	2.82	0.51	6.63
	Jun-03	0.00	1.89	1.89	48.92	41.65	1.68	5.86	0.70	8.38
	Aug-03	1.36	0.82	2.18	76.41	9.37	1.37	10.68	0.80	6.37
	Oct-03	0.36	2.89	3.25	79.66	12.31	2.13	2.65	0.92	6.87
	Dec-03	0.00	2.44	2.44	75.61	14.59	1.76	5.59	0.87	5.62
	Feb-04	0.00	3.33	3.33	69.35	14.13	3.97	9.21	0.84	5.05
	Apr-04	0.00	7.35	7.35	83.55	8.02	0.41	0.66	0.42	2.77
	Jun-04									13.56
	Aug-04	3.18	3.18	6.37	73.68	9.39	4.58	5.98	0.54	8.08
	Oct-04	0.83	0.83	1.67	72.67	24.18	0.77	0.71	0.87	8.37
	Dec-04	1.98	0.00	1.98	77.59	10.56	2.69	7.19	1.36	6.53
	Feb-05	0.00	3.20	3.20	85.28	10.82	0.59	0.12	1.94	7.99
	Apr-05	3.08	2.55	5.63	87.08	4.75	0.66	1.88	1.23	6.75
	Jun-05	2.69	1.35	4.04	75.08	7.57	2.87	10.44	0.96	5.04
	Aug-05	2.65	0.44	3.09	74.20	11.95	4.48	6.28	0.78	6.81
	Oct-05	2.23	2.60	4.83	84.69	8.11	0.87	1.50	1.01	14.32
	Dec-05	1.02	0.00	1.02	85.13	12.27	0.80	0.78	0.68	6.64
	Feb-06	5.85	0.49	6.33	86.11	3.79	0.53	3.23	0.71	4.23

site	date	%clay	%silt	%mud	%fine	%medium	%coarse	%gravel	%organics	chla
					sand	sand	sand			ს g/g
Whau	Oct-00	0.02	2.75	2.77	93.64	1.79	0.80	1.00	0.76	5.23
	Dec-00	0.26	1.96	2.22	92.38	3.04	0.82	1.53	0.77	8.78
	Feb-01	0.7	2.11	2.81	91.9	2.4	0.69	2.19	0.86	4.87
	Apr-01	0.02	3.17	3.19	82.15	14.23	0.26	0.16	1.42	7.04
	Jun-01	0.57	1.67	2.24	88.91	3.37	0.64	4.84	1.02	10.29
	Aug-01	0.85	1.84	2.69	94.48	1.81	0.65	0.36	0.90	7.03
	Oct-01	0.85	1.90	2.75	92.42	2.78	0.47	1.59	0.86	10.72
	Dec-01	0.53	1.38	1.91	91.65	1.10	0.34	5.00	2.86	11.10
	Feb-02	0.41	2.00	2.41	90.94	4.59	0.81	1.24	1.03	10.53
	Apr-02	1.06	1.06	2.12	95.48	1.29	0.43	0.68	0.93	10.03
	Jun-02	0.00	1.81	1.81	91.37	5.18	0.75	0.89	1.09	8.19
	Aug-02	0.00	1.81	1.81	92.44	2.49	0.54	2.72	1.07	10.67
	Oct-02	0.99	2.31	3.30	91.71	3.79	0.56	0.64	0.75	7.79
	Dec-02	1.70	0.57	2.26	94.94	1.57	0.49	0.73	0.58	8.48
	Feb-03	2.50	1.59	4.10	88.20	4.67	0.91	2.12	0.76	6.45
	Apr-03	0.80	2.41	3.21	92.25	2.19	0.52	1.83	0.80	6.63
	Jun-03	1.76	1.76	3.52	92.20	3.16	0.65	0.47	0.85	8.38
	Aug-03	1.91	0.00	1.91	95.10	1.98	0.59	0.42	0.80	6.37
	Oct-03	1.46	1.46	2.92	93.55	2.24	0.66	0.64	0.92	6.87
	Dec-03	0.80	4.01	4.81	91.87	2.09	0.35	0.89	0.87	5.62
	Feb-04	0.86	4.30	5.16	92.29	1.20	0.50	0.85	0.84	5.05
	Apr-04	0.00	5.10	5.10	93.48	0.97	0.45	0.00	0.58	8.72
	Jun-04									10.02
	Aug-04	2.00	1.33	3.33	94.22	1.51	0.88	0.05	0.16	13.28
	Oct-04	1.47	0.59	2.06	93.08	1.07	0.39	3.40	1.17	11.22
	Dec-04	1.33	2.65	3.98	93.68	1.55	0.80	0.00	2.03	11.79
	Feb-05	0.00	1.62	1.62	93.95	1.22	0.73	2.48	1.58	10.13
	Apr-05	1.94	3.23	5.16	88.73	1.26	0.60	4.24	1.28	7.36
	Jun-05	3.52	0.59	4.10	93.07	0.89	0.58	1.35	1.02	9.77
	Aug-05	2.74	2.19	4.93	91.40	1.37	0.71	1.59	0.63	12.94
	Oct-05	1.05	2.10	3.15	92.89	1.40	0.90	1.67	1.01	12.41
	Dec-05	1.54	0.00	1.54	96.07	1.22	0.42	0.75	1.19	7.19
	Feb-06	1.10	0.74	1.84	95.69	0.83	0.54	1.09	0.84	10.60

10.5 Appendix 5: Benthic Invertebrate data collected between October 2000 and February 2006.

Total, median, mean number of individuals found in 12 cores. Range= 90th percentile – 5th percentile.

Speci	es: Ant	hopleı	ıra aurec	oradiata	a	Site	Series	Total	Median	-	Mean
Site	Series	Total	Median	Range	Mean	HC HC	24 25	21 33	1 2.5	5 5	1.8 2.8
HBV	1	14	1	3	1.2	HC	26	41	3	7	3.4
HBV	2	16	1	4	1.3	HC	27	58	4.5	8	4.8
HBV	3	0	0	0	0.0	HC	28	55	4	8	4.6
HBV	4	21	2	4	1.8	HC	29	45	3	5	3.8
HBV	5 6	23 13	1.5	3	1.9 1.1	HC	30	57	4	6	4.8
HBV HBV	о 7	13	1 1	3 3	1.1	HC HC	31 32	44 40	3 2.5	8 7	3.7 3.3
HBV	8	18	1	4	1.5	HC	33	44	4	5	3.7
HBV	9	56	3	11	4.7	Reef	1	0	0	0	0.0
HBV	10	21	1	4	1.8	Reef	2	1	0	0	0.1
HBV HBV	11 12	17 30	1 3	3 4	1.4 2.5	Reef	3	0	0	0	0.0
HBV	12	30 18	3 1	4 3	2.5 1.5	Reef Reef	4 5	1 0	0 0	0 0	0.1 0.0
HBV	14	39	3	4	3.3	Reef	6	1	0	Õ	0.1
HBV	15	47	3	8	3.9	Reef	7	0	0	0	0.0
HBV	16	17	1.5	3	1.4	Reef	8	2	0	1	0.2
HBV HBV	17 18	20 13	1 1	5 3	1.7 1.1	Reef Reef	9 10	2 0	0 0	1 0	0.2 0.0
HBV	10	22	1.5	3 4	1.1	Reef	10	1	0	0	0.0
HBV	20	30	3	3	2.5	Reef	12	0	0	Õ	0.0
HBV	21	18	1	4	1.5	Reef	13	0	0	0	0.0
HBV	22	26	2	5	2.2	Reef	14	0	0	0	0.0
HBV HBV	23 24	24 34	1.5 2	5 5	2.0 2.8	Reef Reef	15 16	0 0	0 0	0 0	0.0 0.0
HBV	25	24	2	3	2.0	Reef	17	2	0	0	0.0
HBV	26	58	5	8	4.8	Reef	18	0	0	0	0.0
HBV	27	57	3.5	11	4.8	Reef	19	1	0	0	0.1
HBV	28 29	50 37	4 3	8 5	4.2 3.1	Reef	20 21	0	0	0	0.0
HBV HBV	29 30	37 24	3 1.5	э З	3.1 2.0	Reef Reef	21	0 0	0 0	0 0	0.0 0.0
HBV	31	31	2	7	2.6	Reef	23	0	0	Ő	0.0
HBV	32	43	3	8	3.6	Reef	24	0	0	0	0.0
HBV	33	30	2.5	5	2.5	Reef	25	0	0	0	0.0
HC HC	1 2	36 17	3 1	4 3	3.0 1.4	Reef Reef	26 27	0 0	0 0	0 0	0.0 0.0
HC	3	31	2	5	2.6	Reef	28	0	0	0	0.0
HC	4	22	1.5	4	1.8	Reef	29	0	0	0	0.0
HC	5	31	2.5	5	2.6	Reef	30	2	0	0	0.2
HC HC	6 7	26	2 2	4	2.2	Reef	31	0	0	0	0.0
HC	8	23 25	2 1.5	3 4	1.9 2.1	Reef Reef	32 33	0 0	0 0	0 0	0.0 0.0
HC	9	21	1	5	1.8	ShB	1	9	0	2	0.8
HC	10	19	1	3	1.6	ShB	2	10	0	2	0.8
HC	11	19	1.5	3	1.6	ShB	3	9	0	2	0.8
HC HC	12 13	28 19	2 1.5	4 4	2.4 1.6	ShB ShB	4 5	15 6	1 0	3 2	1.3 0.5
HC	14	22	1.5	4 2.5	1.9	ShB	6	5	0	1	0.3
HC	15	24	1.5	4	2.0	ShB	7	10	1	2	0.8
HC	16	28	2.5	4	2.3	ShB	8	8	0	2	0.7
HC	17 19	20	1.5	3	1.7	ShB	9	5	0	1	0.4
HC HC	18 19	26 36	2 3	3 5	2.2 3.0	ShB ShB	10 11	6 7	0 0.5	2 1	0.5 0.6
HC	20	56	3 4.5	7	3.0 4.7	ShB	12	4	0.5	1	0.0
HC	21	31	2	6	2.6	ShB	13	5	0	1	0.4
HC	22	44	3.5	7	3.7	ShB	14	9	0	2	0.8
HC	23	39	2	8	3.3	ShB	15	14	0.5	2	1.2

Species: Anthopleura aureoradiata cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1 2 3 4 5 6 7 8 9 10 11 12 13 12 12 12 12 12 12 12 12 12 12	Total 11 12 15 11 13 9 13 4 5 4 4 6 8 9 13 14 3 13 20 9 26 30 19 26 30 19 14 22 17 6 6 5	Median 0 0.5 1 0 0.5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 1 1 1 1 2 2 3 3 4 1 3 5 3 5 6 4 3 2 3 4 4 1 1 1	Mean 0.9 1.0 1.3 0.9 1.1 0.8 1.1 0.3 0.4 0.3 0.4 0.3 0.5 0.7 0.8 1.1 1.2 0.3 1.1 1.2 1.5 1.6 1.2 1.2 1.5 1.6 1.2 1.7 1.8 1.4 0.5 0.5 0.7 0.8 1.1 1.7 1.6 2.2 5 1.6 1.2 1.7 1.8 1.4 0.5 0.5 0.5 0.7 0.8 1.1 1.7 1.6 2.2 5 1.6 1.2 1.7 1.8 1.4 0.5 0.5 0.5 0.7 0.8 1.1 1.2 0.3 1.1 1.2 1.2 1.2 1.5 1.6 1.2 1.5 1.6 1.2 1.5 1.6 1.2 1.5 1.6 1.2 1.5 1.6 1.2 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
ShB	32	3	0	1	0.3
Whau		20	1.5	3	
Whau		5	0	1	0.4
Whau	14	15	1	3	1.3
Whau Whau	15 16	11 5	1 0	2 1	0.9 0.4
Whau	17	10	0	2	0.4
Whau	18	7	0	2	0.6
Whau	19	4	0	1	0.3
Whau Whau	20 21	14 11	1 1	3 2	1.2 0.9
Whau	22	9	1	2	0.9
Whau	23	0	0	0	0.0
Whau	24	15	1.5	3	1.3
Whau Whau	25 26	10 14	0.5 0.5	3 3	0.8 1.2
Whau	20	5	0.5	1	0.4
Whau	28	14	1		1.2
Whau	29	8	0.5	2 2 2	0.7
Whau Whau	30 31	10 3	1 0	2 1	0.8 0.3
Whau	32	3 10	1	2	0.3
Whau	33	9	1	2	0.8

Species: Aonides oxycephala						Site	Series	Total	Median	Range	
Site	Series	Total	Median	Range	Mean	HC HC	24 25	3 1	0 0	1 0	0.3 0.1
HBV	1	149	11	20	12.5	HC	26	5	0	1	0.4
HBV	2	160	12.5	23	13.3	HC	27	2	0	1	0.2
HBV HBV	3 4	294 313	22.5 24	30 14	24.5 26.1	HC HC	28 29	0 1	0 0	0 0	0.0 0.1
HBV	5	227	19.5	30	18.9	HC	30	0	0	0	0.0
HBV	6	235	16	26	19.6	HC	31	0	0	0	0.0
HBV	7	366	31	23	30.5	HC	32	3	0	1	0.3
HBV HBV	8 9	356 126	29 9.5	29 14	29.7 10.5	HC Boof	33 1	0	0 0	0 0	0.0 0.1
HBV	9 10	351	9.5 31	46	29.3	Reef Reef	2	1 3	0	1	0.1
HBV	11	248	19	20	20.7	Reef	3	2	0	1	0.2
HBV	12	312	27	35	26.0	Reef	4	1	0	0	0.1
HBV HBV	13 14	236 235	20.5 17	19 10	19.7 19.6	Reef Reef	5 6	0 0	0 0	0 0	0.0 0.0
HBV	14	235 343	26.5	34	28.6	Reef	0 7	1	0	0	0.0
HBV	16	242	21	22	20.2	Reef	8	2	0	1	0.2
HBV	17	130	11.5	12	10.8	Reef	9	0	0	0	0.0
HBV HBV	18 19	228 292	17.5 24.5	23 27	19.0 24.3	Reef	10 11	0 0	0	0	0.0
HBV	20	292 188	24.5 16.5	27 18	24.3 15.7	Reef Reef	12	1	0 0	0 0	0.0 0.1
HBV	21	173	14.5	17	14.4	Reef	13	0	0	0	0.0
HBV	22	223	16.5	14	18.6	Reef	14	0	0	0	0.0
	23	188	15.5	23	15.7	Reef	15	0	0	0	0.0
HBV HBV	24 25	241 248	19 20.5	25 33	20.1 20.7	Reef Reef	16 17	0 2	0 0	0 1	0.0 0.2
HBV	26	348	24.5	26	29.0	Reef	18	4	Õ	1	0.3
HBV	27	254	22.5	27	21.2	Reef	19	0	0	0	0.0
HBV	28	275	21.5	33	22.9	Reef	20	0	0	0	0.0
HBV HBV	29 30	307 255	25 22	17 16	25.6 21.3	Reef Reef	21 22	0 1	0 0	0 0	0.0 0.1
HBV	31	323	22	37	26.9	Reef	23	0	0	0	0
HBV	32	228	21.5	30	19.0	Reef	24	8	0	2	0.7
HBV	33	280	19.5	30	23.3	Reef	25	1	0	0	0.1
HC HC	1 2	2 2	0 0	1 1	0.2 0.2	Reef Reef	26 27	1 2	0 0	0 1	0.1 0.2
HC	3	4	Õ	1	0.3	Reef	28	5	Õ	2	0.4
HC	4	0	0	0	0.0	Reef	29	3	0	1	0.3
HC HC	5 6	2 11	0	1 3	0.2	Reef	30	1	0	0	0.1
HC	0 7	0	0 0	0	0.9 0.0	Reef Reef	31 32	0 1	0 0	0 0	0.0 0.1
HC	8	3	0	1	0.3	Reef	33	1	0	0	0.1
HC	9	0	0	0	0.0	ShB	1	6	0	1	0.5
HC	10	10	0	2 0	0.8	ShB	2	6	0	1	0.5
HC HC	11 12	1 3	0 0	1	0.1 0.3	ShB ShB	3 4	7 27	0 0	2 13	0.6 2.3
HC	13	0	Õ	0	0.0	ShB	5	24	0 0	2	2.0
HC	14	2	0	1	0.2	ShB	6	21	0	4	1.8
HC	15	0	0	0	0.0	ShB	7	0	0	0	0.0
HC HC	16 17	1 0	0 0	0 0	0.1 0.0	ShB ShB	8 9	5 1	0 0	2 0	0.4 0.1
HC	18	5	0	2	0.4	ShB	10	28	0	2	2.3
HC	19	0	0	0	0.0	ShB	11	2	0	0	0.2
HC	20	1	0	0	0.1	ShB	12	26	0	6	2.2
HC HC	21 22	1 1	0 0	0 0	0.1 0.1	ShB ShB	13 14	2 58	0 1	1 33	0.2 4.9
HC	23	0	0	0	0.0	ShB	15	56	0	24	4.7

Species: Aonides oxycephala cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 34 26 27 28 20 31 23 4 5 6 7 8 9 10 11 23 24 26 27 28 20 31 23 31 23 4 5 6 7 8 9 10 11 12 23 24 26 27 28 20 31 23 31 23 4 5 6 7 8 9 10 11 12 23 24 26 27 28 20 31 23 31 23 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 23 24 26 27 28 20 31 23 12 23 24 26 27 28 20 31 23 12 34 5 6 7 8 9 10 11 23 12 23 24 25 26 27 28 20 21 22 23 24 25 26 27 28 20 21 22 23 24 25 26 27 28 20 31 23 12 23 24 25 26 27 28 20 21 22 23 24 25 26 27 28 20 31 23 24 25 26 27 28 20 31 23 24 25 26 27 28 20 31 23 24 25 26 27 28 20 31 20 31 25 26 27 28 20 31 25 26 27 28 20 31 25 26 27 28 20 31 25 26 27 28 20 31 20 31 25 26 27 28 20 31 20 27 28 20 31 25 26 27 28 20 31 25 26 27 28 20 31 20 27 28 29 30 31 20 27 26 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 29 30 31 28 28 28 28 28 28 28 28 28 28	Total 11 6 1 9 24 0 4 9 19 9 13 14 21 8 22 6 12 1 170 7 10 2 26 10 7 2 3 2 0 6 0 0 3 9 6 13 11 9 21 0 4 9 19 9 13 14 21 1 8 22 6 12 21 1 7 7 10 2 2 6 12 11 10 2 4 0 19 9 13 14 2 11 1 8 22 6 12 11 10 2 2 6 12 11 10 2 2 6 12 11 10 2 2 6 12 11 10 2 2 6 12 10 10 2 10 2	Median 0 0 0.5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	Range 3 2 0 2 1 0 1 1 3 3 6 0 2 2 2 3 1 2 1 0 0 1 1 3 6 0 2 2 2 3 1 2 1 0 0 1 1 3 6 0 2 2 2 3 1 2 1 0 1 1 3 6 0 2 2 3 1 2 1 0 1 0 1 2 1 0 1 0 1 0 1 0 1 0 1 0	Mean 0.9 0.5 0.1 0.8 2.0 0.0 0.3 0.8 1.6 0.8 1.2 1.0 0.9 0.7 1.8 0.5 1.0 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.5 0.0 0.2 0.3 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.1 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.1 0.2 0.5 0.0 0.2 0.5 0.1 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.1 0.5 0.1 0.5 0.1 0.2 0.5 0.0 0.2 0.5 0.0 0.2 0.5 0.0 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.0 0.5 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Species: Aquilaspio aucklandica					Site	Series	Total	Median	Range	
Site Series HBV 1 HBV 2 HBV 3 HBV 4 HBV 5 HBV 6 HBV 7 HBV 8 HBV 10 HBV 10 HBV 10 HBV 12 HBV 13 HBV 14 HBV 15 HBV 16 HBV 17 HBV 18 HBV 20 HBV 21 HBV 22 HBV 23 HBV 24 HBV 25 HBV 26 HBV 23 HBV 30 HBV 31 HBV 32 HBV 33 HC 1 HC 2 HC 3 HC 1 HC 10 HC	Total 46 53 111 140 104 112 108 71 86 93 72 66 75 76 61 39 94 21 88 35 48 35 48 35 48 35 48 35 48 36 71 116 142 74 57 26 53 46 41 49 37 36 20 434 37 22 37 10^{-1}	$ \begin{array}{c} \text{Median} \\ 3 \\ 2.5 \\ 8 \\ 11.5 \\ 7.5 \\ 6.5 \\ 7 \\ 5 \\ 7.5 \\ 7 \\ 6 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	Range 9 9218 1727 1817 276 8 14 9 9.5 9 10 176775 10 6 67758663335 17 13 9 8 24252 9 1075575364554	3.9 4.4 9.3 11.7 8.7 9.3 9.0 5.9 7.2 7.8 6.0 5.5 6.3 6.4 5.5 6.3 4.0 2.9 2.8 3.2 3.5 3.6 3.4 2.7 1.3 2.9 5.3 3.0 5.9 9.3 5.8 11.8 6.2 3.8 6.0 3.0 4.4 3.9 3.4 4.1 3.1 3.0 1.7 3.3 2.8 3.1 1.8 3.1	HCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	24 25 26 27 28 20 31 23 45 67 89 10 112 34 56 78 9 10 12 3 12 3 12 3 12 3 12 3 12 3 12 3 1	$\begin{array}{c} 30\\ 10\\ 13\\ 7\\ 14\\ 8\\ 10\\ 14\\ 9\\ 17\\ 7\\ 17\\ 528\\ 19\\ 30\\ 31\\ 17\\ 19\\ 24\\ 9\\ 22\\ 6\\ 23\\ 22\\ 19\\ 0\\ 17\\ 76\\ 76\\ 71\\ 78\\ 64\\ 939\\ 11\\ 518\\ 240\\ 433\\ 4\\ 5\\ 10\\ 17\\ 11\\ 9\\ 624\\ 227\\ 33\\ 7\\ 6\end{array}$	$\begin{array}{c}2\\1\\1\\0\\1\\1\\0\\2\\0.5\\1\\2\\2\\1\\3\\1\\2\\1\\2\\0\\1\\5\\7.5\\6\\4.5\\3\\0.6\\4\\1\\2\\3\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	4 2 3 2 3 1 2 3 2 3 1 3 4 5 3 6 4 5 4 2 4 2 3 2 6 5 3 0 3 10 7 13 1 10 5 5 2 7 3 5 6 3 3 1 1 3 6 1 2 3 1 4 3 3 7 2 2	$\begin{array}{c} 2.5\\ 0.8\\ 1.1\\ 0.6\\ 1.2\\ 0.8\\ 1.4\\ 2.3\\ 1.6\\ 2.6\\ 1.4\\ 2.3\\ 1.6\\ 2.6\\ 1.4\\ 2.3\\ 1.6\\ 2.6\\ 1.4\\ 2.5\\ 2.6\\ 1.4\\ 2.6\\ 1.6\\ 2.6\\ 1.8\\ 0.9\\ 1.8\\ 0.9\\ 1.6\\ 5.3\\ 3.3\\ 0.4\\ 1.5\\ 7.3\\ 2.8\\ 0.4\\ 0.8\\ 1.6\\ 0.9\\ 0.5\\ 2.1\\ 7.3\\ 2.8\\ 0.5\\ 0.5\\ 1.7\\ 2.8\\ 0.6\\ 0.5\\ 0.5\\ 1.7\\ 2.8\\ 0.6\\ 0.5\\ 0.5\\ 1.7\\ 2.8\\ 0.6\\ 0.5\\ 0.5\\ 1.7\\ 2.8\\ 0.6\\ 0.5\\ 0.5\\ 1.7\\ 2.8\\ 0.6\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$
HC 23	27	1.5	5	2.3	ShB	15	4	0	1	0.3

Species: Aquilaspio aucklandica

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 12 23 24 25 26 27 28 29 30 31 2 3 4 5 6 7 8 9 10 11 12 13 12 3 1 2 3 1 2 3 1 2 3 1 12 3 1 12 3 1 12 13 1 12 13 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 3 1 12 13 1 12 13 1 12 13 1 12 13 1 12 13 1 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 19 20 17 18 19 20 11 12 15 16 17 18 19 20 10 17 18 19 20 10 11 15 15 17 18 19 20 10 11 15 15 15 15 15 15 15 15 15	Total 22 29 26 27 32 7 81 46 27 32 7 81 46 27 32 7 81 46 27 32 7 81 46 27 32 7 81 46 27 32 7 81 46 27 32 7 81 40 32 55 1 86 41 39 55 1 86 35 27 81 40 32 55 1 86 41 39 55 1 86 54 1 80 55 1 80 1 80 55 1 80 1 80 1 80 1 8	Median 1.5 2 1 0.5 2 4.5 2.5 1 3 0 1.5 2 3 6 5 3 2.5 1 4 1 0.5 2 2 4.5 1.5 1 2 2.5 1 3 0 1.5 2 3 6 5 3 2.5 1 1.5 1 2 1.5 1 3 0 1.5 1 2 1.5 1 3 0 1.5 1 2 1.5 1 3 0 1.5 1 2 1.5 1 3 0 1.5 1 2 1.5 1 3 0 1.5 1 2 1.5 1 3 0 1.5 1 2 1.5 1 3 0 1.5 1 2 3 6 5 3 2.5 1 1.5 1 2 3 6 5 3 2.5 1 1 1.5 1 2 3 6 5 3 2.5 1 1 1.5 1 2 3 6 5 3 2.5 1 1 1.5 1 2 3 6 5 3 2.5 1 1 1 1 1 1 1 1 1 2 3 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1	Range 4 4 5 6 6 5 5 16 3 4 5 5 5 12 3 3 8 7 7 9 8 4 7 3 9 3 6 6 2 4 3 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	Mean 1.8 2.4 2.2 2.3 2.7 2.3 6.8 4.5 1.3 2.3 1.3 3.3 2.6 2.4 4.6 0.9 1.5 3.8 3.4 3.3 6.4 5.0 2.9 3.5 1.3 3.5 1.3 3.4 5.0 2.9 3.5 1.3 3.5 1.3 1.3 3.4 5.0 2.9 3.5 1.3 1.3 3.4 5.0 2.9 3.5 1.3 3.5 1.3 3.6 2.4 4.6 0.9 3.5 1.3 3.5 1.3 3.6 2.4 4.6 0.9 3.5 1.3 3.5 1.3 3.6 1.5 1.3 3.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Whau	13	10	0.5	2	0.8
Whau	14	12	0	4	1.0
Whau	15	19	1	3	1.6
Whau	16	15	1	2	1.3
Whau	17	11	1	2	0.9
Whau	18	19	1	4	1.6
Whau	19	8	0	2	0.7

Species: Aricidea sp.

Species: <i>Aricidea</i> sp.						Site HC	Series 24	Total 43	Median 3	Range 8	Mean 3.6
Site	Series	Total	Median	Range	Mean	HC	24 25	43 124	9	0 17	3.0 10.3
HBV	1	10	1	3 ັ	0.9	HC	26	115	10	18	9.6
HBV	2	1	0	0	0.1	HC	27	2	0	1	0.2
HBV	3	0	0	0	0.0	HC	28	66	4	12	5.5
HBV	4	6	0	1	0.5	HC	29	109	10	16	9.1
HBV	5	3	0	1	0.3	HC	30	175	14.5	21	14.6
HBV	6	15	0	2	1.3	HC	31	234	14.5	20	19.5
HBV HBV	7 8	17 10	1 0	3 3	1.4 0.8	HC HC	32 33	140 127	12 9.5	19 17	11.7 10.6
HBV	9	3	0	3 1	0.8	Reef	33 1	33	9.5 2.5	6	2.8
HBV	10	2	0	1	0.0	Reef	2	59	4	9	2.0 4.9
HBV	11	8	1	1	0.7	Reef	3	22	2	3	1.8
HBV	12	2	0	1	0.2	Reef	4	63	3	10	5.3
HBV	13	9	0	3	0.8	Reef	5	51	3	8	4.3
HBV	14	1	0	0	0.1	Reef	6	99	8	14	8.3
HBV	15	1	0	0	0.1	Reef	7	51	4.5	7	4.3
HBV HBV	16	1 2	0	0	0.1	Reef	8	45	3.5	8	3.8
нвv HBV	17 18	2 7	0 0	0 3	0.2 0.6	Reef Reef	9 10	36 9	2 1	6 2	3.0 0.8
HBV	19	, 10	0 0.5	2	0.8	Reef	11	9 15	1	2	1.3
HBV	20	4	0	1	0.3	Reef	12	11	1	1	0.9
HBV	21	1	0	0	0.1	Reef	13	42	4	7	3.5
HBV	22	1	0	0	0.1	Reef	14	7	0.5	1.5	0.6
HBV	23	7	0	1	0.6	Reef	15	17	1.5	3	1.4
HBV	24	19	0	6	1.6	Reef	16	35	2.5	7	2.9
HBV HBV	25 26	13 17	0 1	4 4	1.1 1.4	Reef	17 18	63 56	4 4	9 9	5.3 4.7
HBV	20 27	5	0	4 1	0.4	Reef Reef	10	56 75	4 5.5	9 9	4.7 6.3
HBV	28	2	0	0	0.4	Reef	20	67	3.5 3.5	10	5.6
HBV	29	3	0	1	0.3	Reef	21	59	3	14	4.9
HBV	30	7	0	3	0.6	Reef	22	41	2.5	8	3.4
HBV	31	17	1	3	1.4	Reef	23	59	3.5	11	4.9
HBV	32	17	1	3	1.4	Reef	24	42	2.5	6	3.5
HBV	33	2	0	1	0.2	Reef	25	89	5.5	8	7.4
HC HC	1 2	124 52	5.5 2	22 11	10.3 4.3	Reef Reef	26 27	76 33	5 1.5	10 6	6.3 2.8
HC	3	90	2 3.5	15	4.3 7.5	Reef	28	65	4	10	2.0 5.4
HC	4	132	7.5	17	11.0	Reef	29	77	7	11	6.4
HC	5	230	14	45	19.2	Reef	30	89	7	13	7.4
HC	6	7	0	2	0.6	Reef	31	114	11	16	9.5
HC	7	219	12	36	18.3	Reef	32	49	3	11	4.1
HC	8	121	7	21	10.1	Reef	33	65	4.5	11	5.4
HC	9	124	8	18	10.3	ShB	1	19	0.5	5	1.6
HC HC	10 11	23 76	1 4	4 15	1.9 6.3	ShB ShB	2 3	21 24	1	5 8	1.8 2.0
HC	12	86	4 5	11	0.3 7.2	ShB	3 4	24 38	0 3.5	o 7	2.0 3.2
HC	13	132	4	23	11.0	ShB	5	18	0	5	1.5
HC	14	92	8	9.5	7.7	ShB	6	50	2.5	9	4.2
HC	15	25	0.5	6	2.1	ShB	7	44	3.5	6	3.7
HC	16	74	5	9	6.2	ShB	8	26	1.5	5	2.2
HC	17	59	2.5	10	4.9	ShB	9	26	1	5	2.2
HC	18	152	10	22	12.7	ShB	10	38	3	7	3.2
HC HC	19 20	154 147	7 10	26 19	12.8 12.3	ShB ShB	11 12	27 17	2.5 1	4 3	2.3 1.5
HC	20 21	67	3.5	19 7	12.3 5.6	ShB	12	24	1.5	3 4	1.5 2.0
HC	22	187	14	20	15.6	ShB	14	3	0	2	0.3
HC	23	155	8.5	27	12.9	ShB	15	14	0	4	1.2

Species: Aricidea sp.

ShB30322.562.7ShB31563.564.7ShB3221141.8ShB3322121.8Whau134425.55928.7Whau2482365940.2Whau345836.55038.2Whau490.520.8Whau5598527949.8Whau6567474147.3Whau7746579962.2Whau8523375843.6Whau9432305936.0Whau1033216.55827.7Whau1119311.52716.1Whau12399188633.3	Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Total 17 47 20 42 59 46 28 23 26 9 33 11 12 41	Median 1 3 1 1 2 1 1.5 1.5 1 2 0.5 1 2.5	Range 2 9 4 7 15 6 4 5 5 1 6 2 2 7	1.4 3.9 1.7 3.5 4.9 3.8 2.3 1.9 2.2 0.8 2.8 0.9 1.0 3.4
	ShB ShB Whau Whau Whau Whau Whau Whau Whau Whau	32 33 1 2 3 4 5 6 7 8 9 10 11	21 22 344 482 458 9 598 567 746 523 432 332 193	1 1 25.5 36 36.5 0.5 52 47 57 37 30 16.5 11.5	4 2 59 50 2 79 41 99 58 59 58 27	1.8 1.8 28.7 40.2 38.2 0.8 49.8 47.3 62.2 43.6 36.0 27.7 16.1

Site Series Total Median Range Mean HC 25 31 1 6 2.6 HBV 1 0 0 0 0.0 HC 26 3 0 0 0.3 HBV 2 1 0 0 0.1 HC 26 3 0 0 0.3 HBV 2 1 0 0 0.1 HC 27 0 0 0 0.0 HBV 3 1 0 0 0.1 HC 28 2 0 1 0.2 HBV 4 2 0 1 0.2 HC 29 17 0.5 4 1.4 HBV 5 3 0 1 0.3 HC 30 17 1 3 1.4 HBV 6 1 0 0 0.0 1.3 HC 32 16 0 6	species: Arthritica bifurca	Site Series	Total Median	Range Mean
HBV 11 6 0 1 0.5 Reef 3 0 0 0 0.0 HBV 12 1 0 0.5 0.1 Reef 4 15 0.5 2 1.3 HBV 13 7 0 0 0.6 Reef 5 0 0 0 0.0 HBV 14 0 0 0 0.0 Reef 6 0 0 0 0.0 HBV 14 0 0 0 0.0 Reef 7 0 0 0 0.0 HBV 15 0 0 0 0.0 Reef 7 0 0 0 0.0 HBV 16 0 0 0 0.0 Reef 8 0 0 0 0.0 0.0 HBV 18 2 0 1 0.2 Reef 10 1 0.3 0 1 0.3 HBV 19 0 0 0 0.1	ite Series Total Median Range Mether HBV 1 0 0 0 0 HBV 2 1 0 0 0 HBV 3 1 0 0 0 HBV 3 1 0 0 0 HBV 4 2 0 1 0 HBV 5 3 0 1 0 HBV 6 1 0 0 0 HBV 7 0 0 1 0 HBV 10 4 0 1 0 HBV 12 1 0 0 0 HBV 13 7 0 0 0 HBV 18 2 0 1 0 HBV 18 0 0 0 0 HBV 20 3 0 1 0 <t< td=""><td>HC24HC25HC26HC27HC28HC29HC30HC31HC32HC33Reef1Reef2Reef3Reef1Reef5Reef6Reef10Reef11Reef12Reef11Reef12Reef11Reef12Reef12Reef12Reef12Reef12Reef21Reef22Reef22Reef23Reef24Reef24Reef22Reef23Reef24Reef25Reef26Reef27Reef33ShB1ShB3ShB3ShB3ShB5ShB6ShB7ShB8ShB9ShB9ShB9</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	HC 24 HC 25 HC 26 HC 27 HC 28 HC 29 HC 30 HC 31 HC 32 HC 33 Reef 1 Reef 2 Reef 3 Reef 1 Reef 5 Reef 6 Reef 10 Reef 11 Reef 12 Reef 11 Reef 12 Reef 11 Reef 12 Reef 12 Reef 12 Reef 12 Reef 12 Reef 21 Reef 22 Reef 22 Reef 23 Reef 24 Reef 24 Reef 22 Reef 23 Reef 24 Reef 25 Reef 26 Reef 27 Reef 33 ShB 1 ShB 3 ShB 3 ShB 3 ShB 5 ShB 6 ShB 7 ShB 8 ShB 9 ShB 9 ShB 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Species: Arthritica bifurca cont.

Site ShB	Series 15	Total 0	Median 0	Range 0	Mean 0.0
ShB	16	0	0	0	0.0
ShB	17	0	0	0	0.0
ShB	18	0	0	0	0.0
ShB	19	1	0	0	0.1
ShB	20	0	0	0	0.0
ShB	21	11	0	1	0.9
ShB	22	0	0	0	0.0
ShB	23	0	0	0	0.0
ShB	24	6	0	2	0.5
ShB ShB	25 26	9 1	0 0	3 0	0.8 0.1
ShB	20	0	0	0	0.0
ShB	28	1	0	0	0.1
ShB	29	2	Õ	1	0.2
ShB	30	0	0	0	0.0
ShB	31	4	0	0	0.3
ShB	32	0	0	0	0.0
ShB	33	0	0	0	0.0
Whau	1	0	0	0	0.0
Whau	2	3	0	1	0.3
Whau Whau	3 4	10 13	0 0	2 5	0.8 1.1
Whau	4 5	3	0	5 1	0.3
Whau	6	12	0	3	1.0
Whau	7	3	0	1	0.3
Whau	8	5	0	1	0.4
Whau	9	15	0	3	1.3
Whau	10	4	0	1	0.3
Whau	11	1	0	0	0.1
Whau	12	0	0	0	0.0
Whau Whau	13 14	0 0	0 0	0 0	0.0 0.0
Whau	14	3	0	1	0.0
Whau	16	1	0	0	0.0
Whau	17	3	0	1	0.3
Whau	18	2	0	0	0.2
Whau	19	4	0	1	0.3
Whau	20	14	1	3	1.2
Whau	21	3	0	1	0.3
Whau Whau	22 23	10 11	0.5 1	2 2	0.8
Whau	23 24	7	0	2	0.9 0.6
Whau	25	4	0	1	0.0
Whau	26	4	0	1	0.3
Whau	27	2	0	1	0.2
Whau	28	3	0	1	0.3
Whau	29	13	0.5	3	1.1
Whau	30	11	0	4	0.9
Whau	31	1	0	0	0.1
Whau	32	3	0	1	0.3
Whau	33	3	0	1	0.3

Speci	es: Aus	stroven	nus stutc	hburyi		Site HC	Series 24	Total 590	Median 28.5	Range 107	Mean 49.2
Site	Series	Total	Median	Range	Mean	HC	25	257	23	33	21.4
HBV	1	82	7	7	6.9	HC	26	315	28.5	33	26.3
HBV	2	140	13	18	11.7	HC	27	303	27	32	25.3
HBV	3	121	10	13	10.1	HC	28	335	26.5	25	27.9
HBV HBV	4 5	174 161	13 12	15 10	14.5 13.4	HC HC	29 30	371 297	33 23.5	27 20	30.9 24.8
HBV	6	132	12	12	11.0	HC	30	273	23.5 25	20 31	24.0
HBV	7	160	13	12	13.3	HC	32	349	29.5	17	29.1
HBV	8	136	10	13	11.3	HC	33	243	19.5	24	20.3
HBV	9	200	15.5	12	16.7	Reef	1	3	0	0	0.3
HBV	10	163	13	15	13.6	Reef	2	173	14	18	14.4
HBV HBV	11 12	199 166	14.5 13.5	11 8.5	16.6 13.9	Reef	3 4	53 40	3.5	9 10	4.4 4.1
HBV	12	153	13.5	8.5 13	12.8	Reef Reef	4 5	49 24	2.5 1	3	4.1 2.0
HBV	14	161	13	12	13.5	Reef	6	16	1.5	3	1.3
HBV	15	233	18.5	16	19.4	Reef	7	10	0.5	2	0.8
HBV	16	185	14	24	15.4	Reef	8	29	1.5	6	2.4
HBV	17	142	10.5	14	11.8	Reef	9	31	1	8	2.6
HBV	18	162	9	27	13.5	Reef	10	3	0	1	0.3
HBV HBV	19 20	147 180	11 15	10 20	12.3 15.0	Reef Reef	11 12	4 0	0 0	1 0	0.3 0.0
HBV	20	202	17	16	16.8	Reef	13	13	1	2	1.1
HBV	22	180	14	18	15.0	Reef	14	16	1	_ 3.5	1.4
HBV	23	168	13.5	14	14.0	Reef	15	4	0	1	0.3
HBV	24	165	12	13	13.8	Reef	16	3	0	1	0.3
HBV	25	143	12	18	11.9	Reef	17	6	0	2	0.5
HBV HBV	26 27	161 169	12.5 13	20 19	13.4 14.1	Reef Reef	18 19	45 124	2 6.5	14 18	3.8 10.3
HBV	28	163	13	19	13.6	Reef	20	61	0.5 3.5	11	5.1
HBV	29	178	15.5	21	14.8	Reef	21	22	1.5	4	1.8
HBV	30	146	12	13	12.2	Reef	22	2	0	1	0.2
HBV	31	156	13	14	13.0	Reef	23	15	1	2	1.3
HBV	32	158	11	17	13.2	Reef	24	30	0.5	10	2.5
HBV HC	33 1	180 210	14 14.5	10 29	15.0 17.5	Reef Reef	25 26	24 81	1 5	5 11	2.0 6.8
HC	2	242	21.5	23	20.2	Reef	20	6	0	1	0.5
HC	3	358	32.5	28	29.8	Reef	28	6	Õ	2	0.5
HC	4	428	34.5	38	35.7	Reef	29	17	0	1	1.4
HC	5	454	38.5	42	37.8	Reef	30	6	0	2	0.5
HC	6	426	33	23	35.5	Reef	31	5	0	1	0.4
HC HC	7 8	433 485	31.5 39	37 30	36.1 40.4	Reef Reef	32 33	66 7	4.5 0.5	10 1	5.5 0.6
HC	9	450	36.5	30	37.5	ShB	1	21	1.5	4	1.8
HC	10	456	38.5	25	38.0	ShB	2	23	2	4	1.9
HC	11	424	34	23	35.3	ShB	3	55	2	13	4.6
HC	12	372	31	37	31.0	ShB	4	63	5	9	5.3
HC HC	13 14	299 336	26.5 30	16 28	24.9 28.0	ShB ShB	5	48	3	8	4.0
HC	14	530 527	30 46.5	20 37	28.0 43.9	ShB	6 7	29 38	3 3	4 7	2.4 3.2
HC	16	466	38	27	38.8	ShB	8	37	2.5	8	3.1
HC	17	386	32.5	23	32.2	ShB	9	38	2.5	7	3.2
HC	18	384	33	24	32.0	ShB	10	41	2	8	3.4
HC	19	447	39.5	24	37.3	ShB	11	23	1.5	4	1.9
HC HC	20 21	410 376	34 32.5	40 24	34.2 31.3	ShB ShB	12 13	45 15	3 0.5	8 4	3.8 1.3
HC	22	318	32.5 23	24 25	26.5	ShB	13	36	0.5 3	4 7	1.3 3.0
HC	23	337	26.5	24	28.1	ShB	15	64	5	, 10	5.3

Species: Austrovenus stutchburyi cont.

Site ShB	Series 16	Total 44	Median 2.5	Range 9	Mean 3.7
ShB	17	24	0.5	6	2.0
ShB	18	26	2	4	2.2
ShB	19	7	0	1	0.6
ShB	20	199	6	54	16.6
ShB	21	39	1.5	6	3.3
ShB	22	19	0	6	1.6
ShB	23	16	0	4	1.3
ShB	24	29	1	8	2.4
ShB	25	14	1	2	1.2
ShB	26	114	4.5	11	9.5
ShB	27	51 11	3 0	10	4.3
ShB ShB	28 29	4	0	3 1	0.9 0.3
ShB	29 30	4 14	0.5	2	0.3 1.2
ShB	31	22	1	4	1.8
ShB	32	19	1.5	4	1.6
ShB	33	17	0	6	1.4
Whau	1	149	11.5	17	12.4
Whau	2	322	22.5	46	26.8
Whau	3	513	41.5	39	42.8
Whau	4	96	8.5	9	8.0
Whau	5	210	16.5	23	17.5
Whau	6	197	16.5	20	16.4
Whau Whau	7 8	135 404	10 34.5	15 26	11.3 33.7
Whau	o 9	233	34.5 16.5	20 25	33.7 19.4
Whau	10	0	0	0	0.0
Whau	11	119	9.5	14	9.9
Whau	12	125	9	13	10.4
Whau	13	71	6.5	9	5.9
Whau	14	157	12.5	18	13.1
Whau	15	253	17.5	21	21.1
Whau	16	252	14.5	30	21.0
Whau	17	328	26	21	27.3
Whau	18	141	10	13	11.8
Whau Whau	19 20	206 759	18 68.5	22 60	17.2 63.3
Whau	20	253	17.5	21	21.1
Whau	22	84	6.5	10	7.0
Whau	23	103	9	12	8.6
Whau	24	127	9	13	10.6
Whau	25	92	7	9	7.7
Whau	26	1034	90	134	86.2
Whau	27	149	12	15	12.4
Whau	28	74	6	9	6.2
Whau	29	0	0	0	0.0
Whau	30	46	4	4	3.8
Whau	31	52 270	3.5 20 5	5 41	4.3
Whau Whau	32 33	370 58	30.5 5.5	41 6	30.8 4.8
vvilau	55	50	5.5	0	4.0

Species: Boccardia syrtis

Site ShB ShB	Series 16 17	Total 64 32	Median 1 1	Range 20 6	Mean 5.3 2.7
ShB	18	21	0.5	5	1.8
ShB	19	34	1	10	2.8
ShB	20	131	2	31	10.9
ShB	21	52	1.5	9	4.3
ShB	22	51	3	7	4.3
ShB ShB	23 24	71 56	5 2.5	15 11	5.9 4.7
ShB	24 25	12	2.5	2	1.0
ShB	26	59	2.5	9	4.9
ShB	27	25	1.5	4	2.1
ShB	28	87	5.5	16	7.3
ShB	29	96	4.5	22	8.0
ShB	30	51	2.5	10	4.3
ShB	31	82	4	21	6.8
ShB	32	56	2	13	4.7
ShB	33 1	44	2.5 1	6 4	3.7 2.0
Whau Whau	2	24 17	1	4 4	2.0 1.4
Whau	2	9	0	1	0.8
Whau	4	19	0.5	5	1.6
Whau	5	27	0.5	8	2.3
Whau	6	17	1	4	1.4
Whau	7	8	0	2	0.7
Whau	8	17	1	3	1.4
Whau	9	8	0	3	0.7
Whau	10	6	0	2	0.5
Whau Whau	11 12	3 9	0 0.5	1 2	0.3 0.8
Whau	12	9 4	0.5	2	0.8
Whau	14	8	0	2	0.7
Whau	15	21	1	2	1.8
Whau	16	27	1	8	2.3
Whau	17	16	1	3	1.3
Whau	18	16	0	5	1.3
Whau	19	4	0	1	0.3
Whau	20	26	1	5	2.2
Whau	21 22	21 32	1 1	2 8	1.8 2.7
Whau Whau	22	32 41	2	o 8	2.7 3.4
Whau	24	26	1	5	2.2
Whau	25	30	2	5	2.5
Whau	26	27	2	5	2.3
Whau	27	5	0	1	0.4
Whau	28	34	1.5	8	2.8
Whau	29	15	1	4	1.3
Whau	30	12	0.5	2	1.0
Whau	31	9	0	2	0.8
Whau Whau	32 33	13 5	1 0	2 1	1.1
vmau	33	5	U	I	0.4

Speci	es: Col	urosty	lis lemur	um		Site HC	Series 24	Total 27	Median 1.5	Range 5	Mean 2.3
Site	Series	Total	Median	Range	Mean	HC	24 25	16	1.5	2	2.3 1.3
HBV	1	14	1	3	1.2	HC	26	33	2.5	5	2.8
HBV	2	10	0.5	2	0.8	HC	27	3	0	0	0.3
HBV	3	11	1	1	0.9	HC	28	13	0.5	2	1.1
HBV	4	50	3.5	10	4.2	HC	29	31	1	7	2.6
HBV HBV	5 6	26 42	2 3	3 6	2.2 3.5	HC HC	30 31	41 20	2 2	8 3	3.4 1.7
HBV	7	42 26	2	5	2.2	HC	32	20 19	2	3 4	1.6
HBV	8	21	1	4	1.8	HC	33	22	1	5	1.8
HBV	9	15	1	2	1.3	Reef	1	4	0	2	0.3
HBV	10	70	4	10	5.9	Reef	2	19	1	5	1.6
HBV	11	47	3.5	8	3.9	Reef	3	9	0	2	0.8
HBV	12	56	4	10.5	4.7	Reef	4	94	4.5	19	7.8
HBV	13	28	2	5	2.3	Reef	5	218	9.5	46	18.2
HBV HBV	14 15	18 35	0 1.5	5 8	1.5 2.9	Reef Reef	6 7	11 8	0.5 0	1 2	0.9 0.7
HBV	16	29	1.5	5	2.9	Reef	8	2	0	2	0.7
HBV	17	10	1.0	2	0.8	Reef	9	9	0	2	0.8
HBV	18	20	1	6	1.7	Reef	10	54	4	8	4.5
HBV	19	20	1	4	1.7	Reef	11	22	2	3	1.8
HBV	20	26	1.5	5	2.2	Reef	12	2	0	1	0.2
HBV	21	30	1.5	5	2.5	Reef	13	6	0	1	0.5
HBV	22	21	1	4	1.8	Reef	14	0	0	0	0.0
HBV HBV	23 24	17 36	1.5 2.5	3 6	1.4 3.0	Reef Reef	15 16	9 48	0 1.5	3 9	0.8 4.0
HBV	24 25	30 34	2.5	5	2.8	Reef	17	40 44	1.5	9 10	4.0 3.7
HBV	26	20	1	4	1.7	Reef	18	7	1	1	0.6
HBV	27	11	1	2	0.9	Reef	19	72	6.5	10	6.0
HBV	28	11	1	2	0.9	Reef	20	22	1	5	1.8
HBV	29	16	1	4	1.3	Reef	21	4	0	1	0.3
HBV	30	55	4.5	6	4.6	Reef	22	31	2	6	2.6
HBV	31	26	2	4	2.2	Reef	23	23	1	4	1.9
HBV HBV	32 33	24 21	2 1.5	3 4	2.0 1.8	Reef Reef	24 25	35 6	1.5 0	8 1	2.9 0.5
HC	33 1	15	1.5	3	1.3	Reef	26	29	2	5	2.4
HC	2	1	0	0	0.1	Reef	27	11	0.5	2	0.9
HC	3	16	1	5	1.3	Reef	28	12	0.5	2	1.0
HC	4	17	0	4	1.4	Reef	29	11	0	2	0.9
HC	5	23	1.5	2	1.9	Reef	30	8	0	2	0.7
HC	6	32	2.5	4	2.7	Reef	31	14	0	3	1.2
HC HC	7 8	13 15	0.5	3 5	1.1 1.3	Reef	32	3	0	1	0.3
HC	o 9	9	0 0	3	0.8	Reef ShB	33 1	2 9	0 0	1 2	0.2 0.8
HC	10	24	1.5	6	2.0	ShB	2	9	0	2	0.8
HC	11	10	1	2	0.8	ShB	3	16	0	4	1.3
HC	12	26	2	5	2.2	ShB	4	26	0.5	4	2.2
HC	13	20	1.5	3	1.7	ShB	5	38	1	11	3.2
HC	14	9	0	3	0.8	ShB	6	19	0	3	1.6
HC	15	18	1	5	1.5	ShB	7	17	1	4	1.4
HC HC	16 17	9 12	0.5 1	2 3	0.8	ShB	8	22 31	1	4	1.8
HC	17	20	1	ა 5	1.0 1.7	ShB ShB	9 10	31 113	0.5 8	8 18	2.6 9.4
HC	19	20	1	4	1.8	ShB	11	7	0	2	9.4 0.6
HC	20	22	1	4	1.8	ShB	12	, 13	Õ	3	1.1
HC	21	14	1	2	1.2	ShB	13	6	0	2	0.5
HC	22	39	2	7	3.3	ShB	14	16	1	5	1.4
HC	23	25	2	4	2.1	ShB	15	61	4.5	8	5.1

Species: Colurostylis lemurum cont.

Site ShB	Series 16	Total 34	Median 1.5	Range	Mean 2.8
ShB	17	22	1	6	1.8
ShB	18	18	1.5	3	1.5
ShB	19	41	2.5	8	3.4
ShB	20	45	3.5	10	3.8
ShB	21	6	0	1	0.5
ShB	22	17 3	1 0	3 1	1.4
ShB ShB	23 24	3 12	0	3	0.3 1.0
ShB	25	18	1	4	1.5
ShB	26	26	0	2	2.2
ShB	27	29	2	5	2.4
ShB	28	6	0	1	0.5
ShB	29	9	0	1	0.8
ShB	30	14	1	3	1.2
ShB	31	15	0	3	1.3
ShB	32	4	0	1	0.3
ShB Whau	33 1	7 13	0 1	2 2	0.6 1.1
Whau	2	14	1	3	1.1
Whau	3	6	0	1	0.5
Whau	4	18	2	3	1.5
Whau	5	50	3	8	4.2
Whau	6	12	0	4	1.0
Whau	7	11	1	2	0.9
Whau	8	7	0.5	1	0.6
Whau	9	18	2	2 12	1.5
Whau Whau	10 11	80 10	5.5 0.5	2	6.7 0.8
Whau	12	41	3	7	0.8 3.4
Whau	13	5	0	1	0.4
Whau	14	8	0.5	2	0.7
Whau	15	4	0	1	0.3
Whau	16	29	1.5	4	2.4
Whau	17	21	1	4	1.8
Whau	18	25	1.5	3	2.1
Whau Whau	19 20	27 19	2 1.5	5 3	2.3 1.6
Whau	20 21	4	0	3 1	0.3
Whau	22	- 18	1	3	1.5
Whau	23	27	1	2	2.3
Whau	24	47	4.5	6	3.9
Whau	25	14	1	3	1.2
Whau	26	20	1.5	3	1.7
Whau	27	21	2	2	1.8
Whau	28	15	1	4	1.3
Whau	29	16 10	1	3 4	1.3
Whau Whau	30 31	19 20	1 2	4 3	1.6 1.7
Whau	32	20 16	2	3	1.7
Whau	33	28	2	3	2.3
			-	-	

Species: Diloma subrostrata						Site HC	Series 24	Total 20	Median 0	Range 3	Mean 1.7
Site	Series	Total	Median	Range	Mean	HC	25	12	1	3	1.0
HBV	1	6	0	2	0.5	HC	26	4	0	1	0.3
HBV	2	3	0	1	0.3	HC	27	7	0	2	0.6
HBV	3	0	0	0	0.0	HC	28	6	0	2	0.5
HBV	4	5	0	1	0.4	HC	29	6	0	1	0.5
HBV	5	10	1	2	0.8	HC	30	9	0.5	1	0.8
HBV	6	1	0	0	0.1	HC	31	4	0	1	0.3
HBV	7	0	0	0	0.0	HC	32	15	1	4	1.3
HBV HBV	8 9	0 2	0 0	0	0.0 0.2	HC Doof	33 1	2	0	0	0.2
HBV	9 10	2 10	1	1 2	0.2	Reef Reef	1 2	2 3	0 0	0 1	0.2 0.3
HBV	10	10	0.5	2	0.8	Reef	2	1	0	0	0.3
HBV	12	4	0	2	0.4	Reef	4	0	0	Õ	0.0
HBV	13	2	0	1	0.2	Reef	5	0	0	0	0.0
HBV	14	8	1	2	0.7	Reef	6	1	0	0	0.1
HBV	15	1	0	0	0.1	Reef	7	0	0	0	0.0
HBV	16	19	2	3	1.6	Reef	8	0	0	0	0.0
HBV	17	8	0.5	1	0.7	Reef	9	0	0	0	0.0
HBV HBV	18 19	3 6	0 0	1 1	0.3	Reef	10	2	0	1	0.2
HBV	20	0 7	0 0.5	1	0.5 0.6	Reef Reef	11 12	0 0	0 0	0 0	0.0 0.0
HBV	21	2	0.5	1	0.2	Reef	13	0	0	0	0.0
HBV	22	2	Õ	1	0.2	Reef	14	Õ	0 0	Õ	0.0
HBV	23	2	0	1	0.2	Reef	15	0	0	0	0.0
HBV	24	12	0.5	3	1.0	Reef	16	0	0	0	0.0
HBV	25	13	0.5	4	1.1	Reef	17	0	0	0	0.0
HBV	26	6	0	2	0.5	Reef	18	0	0	0	0.0
HBV	27	11	1	2	0.9	Reef	19	0	0	0	0.0
HBV HBV	28 29	3 8	0 0	1 2	0.3 0.7	Reef Reef	20 21	0 0	0 0	0 0	0.0 0.0
HBV	29 30	2	0	2	0.2	Reef	22	0	0	0	0.0
HBV	31	15	Õ	4	1.3	Reef	23	Õ	0 0	Õ	0.0
HBV	32	12	0.5	3	1.0	Reef	24	0	0	0	0.0
HBV	33	1	0	0	0.1	Reef	25	1	0	0	0.1
HC	1	16	2	2	1.3	Reef	26	0	0	0	0.0
HC	2	14	1	2	1.2	Reef	27	0	0	0	0.0
HC	3	2	0	1	0.2	Reef	28	0	0	0	0.0
HC HC	4 5	8 8	0 0.5	2 1	0.7 0.7	Reef Reef	29 30	0 0	0 0	0 0	0.0 0.0
HC	6	5	0.5	1	0.4	Reef	30	0	0	0	0.0
HC	7	43	3.5	7	3.6	Reef	32	0	0	0	0.0
HC	8	4	0	1	0.3	Reef	33	0	0	0	0.0
HC	9	14	1	2	1.2	ShB	1	6	0	2	0.5
HC	10	26	1.5	6	2.2	ShB	2	5	0	1	0.4
HC	11	18	1	4	1.5	ShB	3	2	0	1	0.2
HC	12	7	1	1	0.6	ShB	4	9	0	2	0.8
HC	13	2	0	1	0.2	ShB	5	3	0	0	0.3
HC HC	14 15	1 8	0 0	0.5 1	0.1 0.7	ShB ShB	6 7	0 2	0 0	0 0	0.0 0.2
HC	16	10	1	2	0.7	ShB	8	2 1	0	0	0.2
HC	17	8	0	2	0.7	ShB	9	0	0	0	0.0
HC	18	10	1	2	0.8	ShB	10	9	0.5	2	0.8
HC	19	5	0	2	0.4	ShB	11	5	0	1	0.4
HC	20	5	0	1	0.4	ShB	12	3	0	1	0.3
HC	21	4	0	1	0.3	ShB	13	1	0	0	0.1
HC	22	8 5	1	1	0.7	ShB	14 15	0	0	0	0.0
HC	23	5	0	1	0.4	ShB	15	2	0	1	0.2

Species: Diloma subrostrata cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 33 1 2 34 5 6 7 8 9 10 11 12 23 24 25 26 27 28 29 30 132 33 1 2 3 4 5 6 7 8 9 10 11 12 23 24 25 26 27 28 29 30 1 23 24 25 26 27 28 29 30 1 23 24 25 26 27 28 29 30 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 19 20 21 23 24 26 27 28 29 30 1 23 1 2 3 4 5 6 7 8 9 10 11 12 3 14 5 16 7 18 19 20 21 23 24 25 26 27 28 29 30 12 23 12 23 24 25 26 7 8 9 10 11 12 23 24 25 26 7 8 9 10 11 22 23 24 25 26 7 8 9 10 11 22 23 24 25 26 27 27 28 29 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27	Total 1 8 1 0 3 1 2 0 16 8 4 4 2 4 10 6 8 0 0 8 5 3 1 3 0 0 2 0 2 0 0 0 3 2 0 1 3 1 3 1 1 2 0 1 8 4 4 2 4 10 6 8 0 0 8 5 3 1 3 0 0 2 0 0 0 0 1 3 1 2 0 1 3 1 2 0 1 8 4 4 2 0 1 6 8 4 4 2 0 1 8 1 0 0 8 5 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Median 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0	Range 0 2 0 0 1 0 0 3 1 1 1 1 2 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 0 0 0 3 1 1 1 1 2 2 2 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0	$\begin{array}{c} 0.1\\ 0.7\\ 0.1\\ 0.0\\ 0.3\\ 0.1\\ 0.2\\ 0.0\\ 1.3\\ 0.7\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.1\\ 0.3\\ 0.0\\ 0.0\\ 0.2\\ 0.0\\ 0.0\\ 0.2\\ 0.0\\ 0.2\\ 0.0\\ 0.2\\ 0.0\\ 0.2\\ 0.0\\ 0.2\\ 0.0\\ 0.2\\ 0.0\\ 0.2\\ 0.0\\ 0.1\\ 0.3\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1$
Whau Whau Whau Whau	24 25 26	1 2 1	0 0 0 0	0 1 0	0.1 0.1 0.2 0.1

Species: Fuchone sp

Speci	es: <i>Euc</i>	hone s	sp.			Site HC	Series 24	Total 0	Median 0	Range 0	Mean 0.0
Site	Series	Total	Median	Range	Mean	HC	24 25	8	0	2	0.0
HBV	1	0	0	0	0.0	HC	26	0	0	0	0.0
HBV	2	0	0	0	0.0	HC	27	0	0	0	0.0
HBV	3	0	0	0	0.0	HC	28	0	0	0	0.0
HBV	4	0	0	0	0.0	HC	29	1	0	0	0.1
HBV	5	0	0	0	0.0	HC	30	0	0	0	0.0
HBV	6	0	0	0	0.0	HC	31	1	0	0	0.1
HBV	7	0	0	0	0.0	HC	32	0	0	0	0.0
HBV	8	0	0	0	0.0	HC	33	0	0	0	0.0
HBV	9	0	0	0	0.0	Reef	1	55	3	8	4.6
HBV HBV	10 11	0 0	0 0	0 0	0.0 0.0	Reef Reef	2 3	139 57	8 3.5	18 10	11.6 4.8
HBV	12	0	0	0	0.0	Reef	4	97	5.5 6.5	21	4.0 8.1
HBV	13	0	0	0	0.0	Reef	5	452	35	72	37.7
HBV	14	0	0	0	0.0	Reef	6	648	37	89	54.0
HBV	15	0	0	0	0.0	Reef	7	251	22.5	21	20.9
HBV	16	0	0	0	0.0	Reef	8	59	4.5	8	4.9
HBV	17	0	0	0	0.0	Reef	9	43	2.5	8	3.6
HBV	18	0	0	0	0.0	Reef	10	43	2	8	3.6
HBV	19	0	0	0	0.0	Reef	11	107	4	26	8.9
HBV	20	0	0	0	0.0	Reef	12	24	1.5	5	2.0
HBV HBV	21 22	0 0	0 0	0 0	0.0 0.0	Reef Reef	13 14	177 28	10 1	24 9	14.8 2.4
HBV	22	0	0	0	0.0	Reef	14	20 24	1	9 6	2.4 2.0
HBV	24	0	0	0	0.0	Reef	16	80	4	14	2.0 6.7
HBV	25	Õ	0	0 0	0.0	Reef	17	790	58.5	128	65.8
HBV	26	0	0	0	0.0	Reef	18	525	27	93	43.8
HBV	27	0	0	0	0.0	Reef	19	482	33.5	50	40.2
HBV	28	0	0	0	0.0	Reef	20	333	30.5	42	27.8
HBV	29	0	0	0	0.0	Reef	21	301	21.5	41	25.1
HBV	30	0	0	0	0.0	Reef	22	305	24.5	35	25.4
HBV	31	0	0	0	0.0	Reef	23	604	36.5	94	50.3
HBV HBV	32 33	0 0	0 0	0 0	0.0 0.0	Reef	24 25	909 377	73 29.5	94 38	75.8 31.4
HC	33 1	0	0	0	0.0	Reef Reef	25 26	191	29.5 14	30 24	15.9
HC	2	0	0	0	0.0	Reef	27	43	1	10	3.6
HC	3	Õ	0	Õ	0.0	Reef	28	118	7	16	9.8
HC	4	0	0	0	0.0	Reef	29	330	23.5	51	27.5
HC	5	1	0	0	0.1	Reef	30	611	54	61	50.9
HC	6	0	0	0	0.0	Reef	31	396	39.5	48	33.0
HC	7	0	0	0	0.0	Reef	32	129	8.5	17	10.8
HC	8	0	0	0	0.0	Reef	33	58	3.5	10	4.8
HC HC	9 10	0 1	0	0	0.0 0.1	ShB ShB	1 2	0	0	0	0.0
HC	11	0	0 0	0 0	0.1	ShB	2 3	0 10	0 0	0 3	0.0 0.8
HC	12	0	0	0	0.0	ShB	4	1	0	0	0.0
HC	13	0	0	0	0.0	ShB	5	6	0	2	0.5
HC	14	0	0	0	0.0	ShB	6	3	0	0	0.3
HC	15	0	0	0	0.0	ShB	7	12	0.5	2	1.0
HC	16	0	0	0	0.0	ShB	8	10	0	2	0.8
HC	17	0	0	0	0.0	ShB	9	19	1	4	1.6
HC	18	0	0	0	0.0	ShB	10	48	0	5	4.0
HC	19 20	0	0	0	0.0	ShB	11	27	0	8	2.3
HC HC	20 21	0 0	0 0	0 0	0.0 0.0	ShB ShB	12 13	10 13	0 0	4 5	0.9 1.1
HC	22	0	0	0	0.0	ShB	13	0	0	0	0.0
HC	23	0	0	0	0.0	ShB	15	0	0	0	0.0
-	-				-		-	-	-	-	

Species: *Euchone* sp. cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24	Total 13 23 14 17 59 35 169 156 223	Median 1 0.5 1 1.5 0.5 14 5.5 5	Range 2 7 4 3 11 5 26 39 78	Mean 1.1 1.9 1.2 1.4 4.9 2.9 14.1 13.0 18.6
ShB ShB ShB ShB ShB ShB ShB Whau Whau Whau	25 26 27 28 29 30 31 32 33 1 2 33	52 44 79 78 150 52 76 37 19 0 0 0	1.5 2 3.5 3 6 1 1.5 1.5 0 0 0	11 8 15 16 31 11 18 5 3 0 0 0	4.3 3.7 6.6 6.5 12.5 4.3 6.3 3.1 1.6 0.0 0.0 0.0
Whau Whau Whau Whau Whau Whau Whau Whau	4 5 6 7 8 9 10 11 12 13	0 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Whau Whau Whau Whau Whau Whau Whau Whau	14 15 16 17 18 19 20 21 22 23 24	0 1 0 0 0 10 1 0 2 3	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 2 0 0 0 0 0	0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.2 0.3
Whau Whau Whau Whau Whau Whau Whau Whau	25 26 27 28 29 30 31 32 33	2 2 0 0 2 0 13 1	0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 2 0	0.2 0.2 0.0 0.0 0.0 0.2 0.0 1.1 0.1

Speci	Species: Exosphaeroma spp.					Site HC	Series 24	Total 5	Median 0	Range	Mean 0.4
Site	Series	Total	Median	Range	Mean	HC	25	7	0.5	1	0.4
HBV	1	3	0	1	0.3	HC	26	11	0.5	2	0.9
HBV	2	24	2.5	4	2.0	HC	27	3	0	1	0.3
HBV	3	12	1	2	1.0	HC	28	7	1	1	0.6
HBV	4	17	1	3	1.4	HC	29	3	0	1	0.3
HBV	5	38	1.5	8	3.2	HC	30	9	0.5	2	0.8
HBV	6	22	1	6	1.8	HC	31	1	0	0	0.1
HBV	7	11	0	3	0.9	HC	32	5	0	1	0.4
HBV	8	19	1.5	3	1.6	HC	33	10	1	2	0.8
HBV	9	21	1.5	3	1.8	Reef	1	0	0	0	0.0
HBV	10	66	5	8	5.5	Reef	2	0	0	0	0.0
HBV	11	36	2.5	6	3.0	Reef	3	0	0	0	0.0
HBV	12	20	1	4.5	1.7	Reef	4	0	0	0	0.0
HBV HBV	13 14	12 16	0 1	2 3	1.0 1.4	Reef Reef	5 6	1 4	0 0	0 1	0.1 0.3
HBV	14	24	2	3	2.0	Reef	0 7	4	0	0	0.3
HBV	16	24 7	2 0.5	1	0.6	Reef	8	0	0	0	0.0
HBV	17	, 10	1	2	0.8	Reef	9	0	0	0	0.0
HBV	18	13	0.5	2	1.1	Reef	10	0	0	0	0.0
HBV	19	13	1	2	1.1	Reef	11	0	0	Õ	0.0
HBV	20	22	2	4	1.8	Reef	12	Õ	0 0	Õ	0.0
HBV	21	14	1	3	1.2	Reef	13	0	0	0	0.0
HBV	22	20	1.5	3	1.7	Reef	14	0	0	0	0.0
HBV	23	0	0	0	0.0	Reef	15	1	0	0	0.1
HBV	24	30	2	5	2.5	Reef	16	0	0	0	0.0
HBV	25	25	1.5	5	2.1	Reef	17	0	0	0	0.0
HBV	26	41	3.5	6	3.4	Reef	18	0	0	0	0.0
HBV	27	34	2.5	6	2.8	Reef	19	0	0	0	0.0
HBV	28 29	4 10	0 0	1 2	0.3	Reef Reef	20 21	0	0	0	0.0
HBV HBV	29 30	6	0	2 1	0.8 0.5	Reef	21	0 0	0 0	0 0	0.0 0.0
HBV	30 31	15	1	3	1.3	Reef	22	0	0	0	0.0
HBV	32	11	0.5	2	0.9	Reef	23	1	0	0	0.0
HBV	33	2	0	1	0.2	Reef	25	0	0	Õ	0.0
HC	1	3	0	1	0.3	Reef	26	0	0	0	0.0
HC	2	3	0	1	0.3	Reef	27	0	0	0	0.0
HC	3	2	0	1	0.2	Reef	28	0	0	0	0.0
HC	4	9	0	3 2	0.8	Reef	29	0	0	0	0.0
HC	5	8	0		0.7	Reef	30	0	0	0	0.0
HC	6	4	0	1	0.3	Reef	31	0	0	0	0.0
HC	7	0	0	0	0.0	Reef	32	0	0	0	0.0
HC	8	9	0	2	0.8	Reef	33 1	0	0	0	0.0
HC HC	9 10	7 2	0 0	1 0	0.6 0.2	ShB ShB	1 2	0 0	0 0	0 0	0.0 0.0
HC	11	2	0	1	0.2	ShB	2	1	0	0	0.0
HC	12	3	0	0	0.3	ShB	4	2	0	1	0.2
HC	13	1	0	Õ	0.1	ShB	5	0	Õ	0	0.0
HC	14	6	0	1.5	0.5	ShB	6	Õ	0	Õ	0.0
HC	15	11	1	2	0.9	ShB	7	0	0	0	0.0
HC	16	4	0	1	0.3	ShB	8	1	0	0	0.1
HC	17	4	0	1	0.3	ShB	9	0	0	0	0.0
HC	18	0	0	0	0.0	ShB	10	1	0	0	0.1
HC	19	0	0	0	0.0	ShB	11	1	0	0	0.1
HC	20	7	0	2	0.6	ShB	12	0	0	0	0.0
HC	21	16 5	1	2	1.3	ShB	13	0	0	0	0.0
HC	22	5	0	2 0	0.4	ShB	14 15	3	0	1	0.3
HC	23	0	0	0	0.0	ShB	15	0	0	0	0.0

Species: Exosphaeroma spp. Cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12	$\begin{array}{c} {\rm Total} \\ {\rm 2} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 3} \\ {\rm 0} \\ {\rm 2} \\ {\rm 0} \\ {\rm 3} \\ {\rm 1} \\ {\rm 4} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 5} \\ {\rm 4} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 3} \\ {\rm 0} \\ {\rm 1} \\ {\rm 1} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 0} \\ {\rm 2} \\ {\rm 1} \\ {\rm 0} \\ {\rm 0} \\ {\rm 0} \\ {\rm 1} \\ {\rm 0} \\ {\rm 1} \\ {\rm 0} \\ {\rm $	Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Range 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 2 0 0 0 1 2 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.1 0.0 0.3 0.0 0.2 0.0 0.3 0.1 0.3 0.1 0.3 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.3 0.0 0.1 0.1 0.2 0.3 0.0 0.2 0.3 0.0 0.1 0.1 0.2 0.3 0.0 0.2 0.3 0.0 0.1 0.1 0.2 0.3 0.0 0.1 0.1 0.2 0.3 0.0 0.2 0.3 0.0 0.1 0.1 0.2 0.3 0.0 0.0
Whau Whau Whau Whau Whau Whau Whau	13 14 15 16 17 18	2 3 0 1 1 0	0 0 0 0 0 0	1 1 0 0 0 0	0.0 0.2 0.3 0.0 0.1 0.1 0.0

Species · Glycera sp

Speci	es: Gly	cera sp).			Site HC	Series 24	Total 6	Median 0.5	Range	Mean 0.5
Site	Series	Total	Median	Range	Mean	HC	24 25	1	0.5	0	0.5
HBV	1	0	0	0	0.0	HC	26	6	0	1	0.5
HBV	2	1	0	0	0.0	HC	27	1	0	0	0.0
HBV	2	3	0	1	0.3	HC	28	5	0	1	0.1
HBV	4	4	0	1	0.3	HC	20 29	2	0	1	0.4
HBV	4 5	4	0	0	0.3	HC	29 30	2 4	0	1	0.2
HBV	6	5	0	1	0.1	HC	30	3	0	1	0.3
HBV	7	5	0	1	0.4	HC	32	2	0	1	0.3
HBV	8	2	0	1	0.4	HC	33	2	0	1	0.2
HBV	9	0	0	0	0.2	Reef	1	9	0	2	0.2
HBV	10	2	0	1	0.2	Reef	2	12	1	2	1.0
HBV	11	3	0	1	0.3	Reef	3	3	0	1	0.3
HBV	12	3	0	1	0.3	Reef	4	1	0	0	0.1
HBV	13	1	0	0	0.1	Reef	5	7	0	2	0.6
HBV	14	4	0	1	0.4	Reef	6	2	0	1	0.2
HBV	15	0	0	0	0.0	Reef	7	3	0	1	0.3
HBV	16	5	0	1	0.4	Reef	8	2	0	1	0.2
HBV	17	2	0	1	0.2	Reef	9	0	0	0	0.0
HBV	18	2	0	1	0.2	Reef	10	0	0	0	0.0
HBV	19	1	0	0	0.1	Reef	11	1	0	0	0.1
HBV	20	2	0	0	0.2	Reef	12	0	0	0	0.0
HBV	21	1	0	0	0.1	Reef	13	6	0.5	1	0.5
HBV	22	5	0	1	0.4	Reef	14	2	0	1	0.2
HBV	23	5	0	2	0.4	Reef	15	1	0	0	0.1
HBV	24	1	0	0	0.1	Reef	16	2	0	1	0.2
HBV	25	4	0	1	0.3	Reef	17	2	0	1	0.2
HBV	26	4	0	1	0.3	Reef	18	2	0	1	0.2
HBV	27	5	0	1	0.4	Reef	19	4	0	1	0.3
HBV HBV	28 29	0 1	0 0	0	0.0 0.1	Reef Reef	20 21	24 20	1.5	4 3	2.0 1.7
HBV	29 30	0	0	0 0	0.1	Reef	21	20 8	1 0	3 2	0.7
HBV	30 31	1	0	0	0.0	Reef	22	8	0	2	0.7
HBV	32	1	0	0	0.1	Reef	23	12	1	3	1.0
HBV	33	2	0	1	0.2	Reef	25	14	1	3	1.2
HC	1	3	0	1	0.3	Reef	26	4	0	1	0.3
HC	2	3	0	1	0.3	Reef	27	7	0	2	0.6
HC	3	6	0	1	0.5	Reef	28	6	0.5	1	0.5
HC	4	6	0.5	1	0.5	Reef	29	5	0	1	0.4
HC	5	4	0	1	0.3	Reef	30	6	0	1	0.5
HC	6	13	1	2	1.1	Reef	31	10	1	2	0.8
HC	7	1	0	0	0.1	Reef	32	16	1	3	1.3
HC	8	11	1	1	0.9	Reef	33	14	1	2	1.2
HC	9	5	0	1	0.4	ShB	1	5	0	1	0.4
HC	10	5	0	1	0.4	ShB	2	8	0	3	0.7
HC	11	4	0	1	0.3	ShB	3	7	0	2	0.6
HC	12	1	0	0	0.1	ShB	4	2	0	1	0.2
HC	13	1	0	0	0.1	ShB	5	1	0	0	0.1
HC	14	1	0	0.5	0.1	ShB	6	2	0	1	0.2
HC	15 16	3	0	1	0.3	ShB	7	3	0	1	0.3
HC HC	16 17	1	0 0	0	0.1	ShB	8	3	0	1	0.3
HC	17 18	2 1	0	1 0	0.2 0.1	ShB ShB	9 10	5 2	0 0	1 1	0.4 0.2
HC	10	2	0	1	0.1 0.2	ShB	10	∠ 1	0	0	0.2 0.1
HC	20	2	0	1	0.2	ShB	12	1	0	0	0.1
HC	20	6	0	2	0.2	ShB	13	2	0	1	0.1
HC	22	3	0	1	0.3	ShB	14	3	0	1	0.2
HC	23	3	0	1	0.3	ShB	15	0	0	0	0.0
-	-				-		-	-	-	-	

Species: Glycera sp. cont.

Site ShB ShB ShB	Series 16 17 18	Total 0 0 2	Median 0 0 0	Range 0 0 1	Mean 0.0 0.0 0.2
ShB ShB ShB	19 20 21	2 1 9	0 0 0	0 0 2	0.2 0.1 0.8
ShB	22	7	1	1	0.6
ShB ShB	23 24	8 3	0 0	0 1	0.7 0.3
ShB	25	0	0	0	0.0
ShB ShB	26 27	2 7	0 0	1 2	0.2 0.6
ShB	28	6	0	1	0.5
ShB ShB	29 30	3 3	0 0	1 1	0.3 0.3
ShB	31	6	0	1	0.5
ShB ShB	32 33	4 5	0 0	1 1	0.3 0.4
Whau	1	0	0	0	0.4
Whau	2	6	0.5	1	0.5
Whau Whau	3 4	6 7	0 0	2 2	0.5 0.6
Whau	5	5	0	1	0.4
Whau Whau	6 7	5 3	0 0	1 1	0.4 0.3
Whau	8	5	0	1	0.4
Whau Whau	9 10	5 0	0 0	1 0	0.4 0.0
Whau	11	5	0	1	0.4
Whau Whau	12 13	3 3	0 0	1 1	0.3 0.3
Whau	14	3	0	1	0.3
Whau Whau	15 16	4 2	0 0	1 1	0.3 0.2
Whau	17	3	0	1	0.3
Whau Whau	18 19	1 2	0 0	0 0	0.1 0.2
Whau	20	6	0.5	1	0.5
Whau Whau	21 22	4 4	0 0	1 1	0.3 0.3
Whau	23	10	1	1	0.8
Whau Whau	24 25	5 2	0 0	1 1	0.4 0.2
Whau	26	3	0	1	0.2
Whau Whau	27 28	0 1	0 0	0 0	0.0 0.1
Whau	20 29	1	0	0	0.1
Whau Whau	30 31	2 0	0 0	1 0	0.2
Whau	32	0 2 7	0	1	0.0 0.2
Whau	33	7	0.5	1	0.6

Speci	Species: Haminoea zelandiae				Site HC	Series 24	Total 0	Median 0	Range 0	Mean 0.0	
Site	Series	Total	Median	Range	Mean	HC	24 25	2	0	1	0.0
HBV	1	0	0	0	0.0	HC	26	1	Õ	0	0.1
HBV	2	0	0	0	0.0	HC	27	5	0	1	0.4
HBV	3	0	0	0	0.0	HC	28	6	0	1	0.5
HBV	4	0	0	0	0.0	HC	29	5	0	1	0.4
HBV	5	0	0	0	0.0	HC	30	0	0	0	0.0
HBV	6	0	0	0	0.0	HC	31	1	0	0	0.1
HBV	7	0	0	0	0.0	HC	32	0	0	0	0.0
HBV	8	0	0	0	0.0	HC	33	1	0	0	0.1
HBV	9	0	0	0	0.0	Reef	1	10	0.5	2	0.8
HBV HBV	10 11	1 0	0 0	0	0.1 0.0	Reef	2 3	20 3	1.5	4 1	1.7 0.3
HBV	12	0	0	0 0	0.0	Reef Reef	3 4	3 4	0 0	1	0.3
HBV	13	0	0	0	0.0	Reef	5	2	0	1	0.2
HBV	14	õ	0 0	0	0.0	Reef	6	4	0	1	0.3
HBV	15	Õ	0	0	0.0	Reef	7	1	0	0	0.1
HBV	16	0	0	0	0.0	Reef	8	8	0.5	2	0.7
HBV	17	1	0	0	0.1	Reef	9	10	1	2	0.8
HBV	18	0	0	0	0.0	Reef	10	3	0	1	0.3
HBV	19	0	0	0	0.0	Reef	11	1	0	0	0.1
HBV	20	0	0	0	0.0	Reef	12	0	0	0	0.0
HBV	21	0	0	0	0.0	Reef	13	0	0	0	0.0
HBV HBV	22	0	0	0	0.0	Reef	14	1	0	0.5	0.1
пвv HBV	23 24	0 0	0 0	0 0	0.0 0.0	Reef Reef	15 16	33 2	2.5 0	4 1	2.8 0.2
HBV	24 25	0	0	0	0.0	Reef	17	2 5	0	2	0.2
HBV	26	0	0	0	0.0	Reef	18	6	0	1	0.4
HBV	27	1	0 0	0	0.1	Reef	19	8	0.5	2	0.7
HBV	28	1	0	0	0.1	Reef	20	29	2	6	2.4
HBV	29	0	0	0	0.0	Reef	21	46	1	11	3.8
HBV	30	0	0	0	0.0	Reef	22	24	0.5	6	2.0
HBV	31	0	0	0	0.0	Reef	23	18	1	4	1.5
HBV	32	0	0	0	0.0	Reef	24	14	1	4	1.2
HBV	33	2	0	1	0.2	Reef	25	1	0	0	0.1
HC	1 2	2	0	0	0.2	Reef	26	9	0	2 2	0.8
HC HC	-	0 1	0 0	0	0.0	Reef	27 28	11 0	1 0	-	0.9
HC HC	3 4	5	0	0 1	0.1 0.4	Reef Reef	28 29	17	1	0 3	0.0 1.4
HC	5	0	0	0	0.0	Reef	30	17	1.5	3	1.4
HC	6	0	0	0	0.0	Reef	31	4	0	1	0.3
HC	7	0	0	0	0.0	Reef	32	0	0	0	0.0
HC	8	3	0	1	0.3	Reef	33	0	0	0	0.0
HC	9	0	0	0	0.0	ShB	1	0	0	0	0.0
HC	10	1	0	0	0.1	ShB	2	0	0	0	0.0
HC	11	2	0	1	0.2	ShB	3	1	0	0	0.1
HC	12	0	0	0	0.0	ShB	4	0	0	0	0.0
HC HC	13 14	0 0	0 0	0 0	0.0 0.0	ShB ShB	5 6	0 0	0	0 0	0.0 0.0
HC	14	0	0	0	0.0	ShB	0 7	0	0 0	0	0.0
HC	16	0	0	0	0.0	ShB	8	2	0	1	0.0
HC	17	3	Õ	1	0.3	ShB	9	1	Õ	0	0.1
HC	18	0	0	0	0.0	ShB	10	0	Õ	Õ	0.0
HC	19	0	0	0	0.0	ShB	11	0	0	0	0.0
HC	20	4	0	1	0.3	ShB	12	0	0	0	0.0
HC	21	7	0	2	0.6	ShB	13	0	0	0	0.0
HC	22	0	0	0	0.0	ShB	14	4	0	2	0.4
HC	23	1	0	0	0.1	ShB	15	5	0	1	0.4

Species: Haminoea zelandiae cont.

Site ShB	Series 16	Total 2	Median 0	Range	Mean 0.2
ShB	17	1	0	0	0.1
ShB	18	0	0	0	0.0
ShB	19	0	0	0	0.0
ShB	20	14	0	2 1	1.2
ShB	21	5 0	0 0	0	0.4
ShB ShB	22 23	0	0	0	0.0 0.0
ShB	23 24	0	0	0	0.0
ShB	25	3	0	1	0.3
ShB	26	3	0	1	0.3
ShB	27	2	0	0	0.2
ShB	28	0	0	0	0.0
ShB	29	0	0	0	0.0
ShB	30	0	0	0	0.0
ShB	31	0	0	0	0.0
ShB	32	0	0	0	0.0
ShB	33	5	0	1	0.4
Whau Whau	1 2	0 1	0 0	0 0	0.0 0.1
Whau	2	7	0.5	1	0.1
Whau	4	0	0.0	0	0.0
Whau	5	0	0	Õ	0.0
Whau	6	1	0	0	0.1
Whau	7	1	0	0	0.1
Whau	8	2	0	1	0.2
Whau	9	7	0.5	1	0.6
Whau	10	0	0	0	0.0
Whau	11	0	0	0	0.0
Whau Whau	12 13	0 0	0 0	0 0	0.0 0.0
Whau	14	0	0	0	0.0
Whau	15	9	0.5	2	0.8
Whau	16	2	0	1	0.2
Whau	17	2	0	1	0.2
Whau	18	0	0	0	0.0
Whau	19	0	0	0	0.0
Whau	20	43	3	5	3.6
Whau	21	9	0.5	2	0.8
Whau	22	0 3	0 0	0 1	0.0
Whau Whau	23 24	3 2	0	1	0.3 0.2
Whau	24 25	0	0	0	0.2
Whau	26	0	0	0	0.0
Whau	27	15	1	3	1.3
Whau	28	0	0	0	0.0
Whau	29	0	0	0	0.0
Whau	30	0	0	0	0.0
Whau	31	0	0	0	0.0
Whau	32	5	0	1	0.4
Whau	33	4	0	1	0.3

Species: Heteromastus filiformis				Site	Series	Total 7	Median		e Mean		
Site N N N N N N N N N N N N N N N N N N N	Series 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 8 9 10 11 2 13 14 5 16 7 8 9 10 11 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{c} {\rm Total} \\ 0 \\ 1 \\ 1 \\ 5 \\ 3 \\ 4 \\ 3 \\ 1 \\ 2 \\ 7 \\ 1 \\ 2 \\ 3 \\ 0 \\ 3 \\ 1 \\ 0 \\ 0 \\ 7 \\ 1 \\ 3 \\ 2 \\ 5 \\ 0 \\ 2 \\ 4 \\ 5 \\ 2 \\ 6 \\ 3 \\ 4 \\ 1 \\ 3 \\ 9 \\ 1 \\ 3 \\ 6 \\ 5 \\ 1 \\ 4 \\ 6 \\ 4 \\ 3 \\ 6 \\ 5 \\ 6 \\ 3 \\ 5 \\ 8 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 1 \\ 1$	Median 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0		e Mean 0.0 0.1 0.4 0.3 0.3 0.9 0.3 0.4 0.2 0.6 0.1 0.2 0.3 0.4 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	HC H	24 25 27 28 20 31 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 24 25 67 89 30 12 31 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 24 25 26 7 89 30 12 31 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 24 25 26 7 89 30 12 31 23 12 34 5 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 24 25 26 7 89 30 12 31 23 12 34 5 67 89 10 11 23 45 67 89 10 11 23 24 25 26 7 89 30 12 31 23 12 31 23 12 31 23 45 67 89 10 11 21 24 22 22 22 22 22 22 22 22 23 23 12 31 2 31 23 12 31 23 12 31 23 12 311 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 3 2 3	$\begin{array}{c} 7\\ 10\\ 4\\ 0\\ 0\\ 4\\ 6\\ 13\\ 4\\ 12\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{matrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$	1 2 1 0 0 1 1 2 1 2 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.6\\ 0.8\\ 0.3\\ 0.0\\ 0.3\\ 0.5\\ 1.1\\ 0.3\\ 0.5\\ 1.1\\ 0.3\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$

Species: Heteromastus filiformis cont.

Site ShB ShB	Series 16 17	Total 4 17	Median 0 1	Range 1 3	Mean 0.3 1.4
ShB ShB	18 19	8 19	0 1	2 5	0.7 1.6
ShB	20	22	1	2	1.8
ShB	21	8	0	1	0.7
ShB	22	28	1.5	4	2.3
ShB	23	37	2	6	3.1
ShB ShB	24 25	33 44	1 4	4 7	2.8 3.7
ShB	26	39	4 2.5	8	3.3
ShB	27	31	1	7	2.6
ShB	28	31	2	7	2.6
ShB	29	65	4	8	5.4
ShB ShB	30 31	11 46	0.5 4	2 7	0.9
ShB	32	46 29	4 2	4	3.8 2.4
ShB	33	43	3	6	3.6
Whau	1	1	0	0	0.1
Whau	2	0	0	0	0.0
Whau	3	1	0	0	0.1
Whau Whau	4 5	10 1	1 0	2 0	0.9 0.1
Whau	6	2	0	1	0.2
Whau	7	0	0	0	0.0
Whau	8	1	0	0	0.1
Whau Whau	9 10	0 6	0 0	0 1	0.0 0.5
Whau	10	0 7	0	2	0.5
Whau	12	1	0 0	0	0.1
Whau	13	1	0	0	0.1
Whau	14	0	0	0	0.0
Whau Whau	15 16	1 0	0 0	0 0	0.1 0.0
Whau	17	1	0	0	0.0
Whau	18	0	0	0	0.0
Whau	19	0	0	0	0.0
Whau	20	2	0	0	0.2
Whau Whau	21 22	1 8	0 0.5	0 2	0.1 0.7
Whau	23	3	0.0	1	0.3
Whau	24	2	0	1	0.2
Whau	25	4	0	1	0.3
Whau	26	7	0	2	0.6
Whau Whau	27 28	0 0	0 0	0 0	0.0 0.0
Whau	29	1	0	0	0.0
Whau	30	4	0	1	0.3
Whau	31	3	0	1	0.3
Whau	32	2 3	0	1	0.2
Whau	33	3	0	1	0.3

Species: Macomona liliana cont.

$\begin{array}{c} 16\\ 12\\ 1\\ 18\\ 0\\ 15\\ 23\\ 21\\ 13\\ 23\\ 6\\ 13\\ 22\\ 5\\ 8\\ 33\\ 25\\ 67\\ 21\\ 9\\ 27\\ 25\\ 24\\ 0\\ 23\\ 12\\ 8\\ 37\\ 11\\ 52\\ 75\\ 93\\ 122\\ 103\\ 88 \end{array}$	$\begin{matrix} 1 \\ 1 \\ 0 \\ 1 \\ 1.5 \\ 1 \\ 1 \\ 0 \\ 1.5 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	320303232231231134353335403121438275471121551	$\begin{array}{c} 0.4\\ 1.3\\ 1.0\\ 0.1\\ 1.5\\ 0.0\\ 1.3\\ 1.9\\ 1.8\\ 1.1\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 0.5\\ 1.9\\ 1.0\\ 0.7\\ 1.9\\ 1.0\\ 0.7\\ 0.0\\ 0.7\\ 0.0\\ 0.7\\ 0.0\\ 0.0\\ 0$
93 122 103 88 100 111 92 102	6.5 9.5 6.5	12 15 15	7.8 10.2 8.6
	$\begin{array}{c} 16\\ 12\\ 1\\ 18\\ 0\\ 15\\ 23\\ 21\\ 13\\ 23\\ 6\\ 13\\ 22\\ 5\\ 8\\ 33\\ 25\\ 67\\ 21\\ 19\\ 27\\ 25\\ 24\\ 0\\ 23\\ 12\\ 12\\ 8\\ 37\\ 11\\ 52\\ 17\\ 50\\ 67\\ 37\\ 64\\ 77\\ 75\\ 93\\ 122\\ 103\\ 88\\ 100\\ 111\\ 92\\ 102 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1212100 18 13000 15 13 23 1.5 2 21 1.5 3 13 12 23 136011312 22 135018013333332.5425236755212319132723251.5524240002323121112128113734111352481712503767653734645777511754.512936.5121229.5151036.515886111006.5111111011926111028.59

Speci	Species: Macroclymenella stewartensis			ensis	Site HC	Series 24	Total 2	Median 0	Range 1	e Mean	
Site	Series	Total	Median	Dongo	Mean	HC	24 25	2 5	0	1	0.2
HBV	1	3	0	1	0.3	HC	25 26	8	0	1	0.4 0.7
HBV	2	4	0	1	0.3	HC	20 27	2	0	1	0.7
HBV	2	3	0	1	0.3	HC	28	2 11	1	2	0.2
HBV	4	2	0	1	0.2	HC	29	7	0.5	1	0.9
HBV	5	2	0	1	0.2	HC	30	4	0.0	1	0.0
HBV	6	0	0	0	0.0	HC	31	17	1	3	1.4
HBV	7	5	Õ	1	0.4	HC	32	18	1.5	3	1.5
HBV	8	7	0	2	0.6	HC	33	21	1	4	1.8
HBV	9	0	0	0	0.0	Reef	1	24	2	4	2.0
HBV	10	2	0	1	0.2	Reef	2	27	2	4	2.3
HBV	11	2	0	1	0.2	Reef	3	38	2.5	5	3.2
HBV	12	0	0	0	0.0	Reef	4	30	2	6	2.5
HBV	13	2	0	1	0.2	Reef	5	20	2	3	1.7
HBV	14	4	0	1	0.4	Reef	6	18	1	3	1.5
HBV	15	2	0	1	0.2	Reef	7	15	1	3	1.3
	16	0	0	0	0.0	Reef	8	16	1	3	1.3
HBV HBV	17 18	0 0	0 0	0 0	0.0 0.0	Reef Reef	9 10	10 10	0.5 1	2 2	0.8 0.9
HBV	10	1	0	0	0.0	Reef	10	10	1	2	0.9
HBV	20	5	0	1	0.4	Reef	12	4	0	1	0.3
HBV	21	2	0 0	1	0.2	Reef	13	12	0.5	3	1.0
HBV	22	1	0	0	0.1	Reef	14	9	1	2	0.8
HBV	23	0	0	0	0.0	Reef	15	30	2.5	3	2.5
HBV	24	3	0	1	0.3	Reef	16	15	1	3	1.3
HBV	25	1	0	0	0.1	Reef	17	9	0.5	2	0.8
HBV	26	3	0	1	0.3	Reef	18	12	1	2	1.0
HBV	27	1	0	0	0.1	Reef	19	19	1.5	3	1.6
HBV	28	0	0	0	0.0	Reef	20	25	2	5	2.1
	29 30	3	0	1	0.3	Reef	21 22	14 17	1 1.5	2 2	1.2 1.4
HBV HBV	30 31	0 3	0 0	0 1	0.0 0.3	Reef Reef	22 23	10	1.5 1	2	1.4 8.3
HBV	32	3	0	1	0.3	Reef	23 24	16	1.5	2	1.3
HBV	33	6	0 0	1	0.5	Reef	25	12	1	2	1.0
HC	1	8	0.5	1	0.7	Reef	26	34	2.5	5	2.8
HC	2	12	1	2	1.0	Reef	27	23	1	5	1.9
HC	3	4	0	1	0.3	Reef	28	9	0.5	1	0.8
HC	4	6	0.5	1	0.5	Reef	29	9	0.5	2	0.8
HC	5	2	0	1	0.2	Reef	30	46	3	7	3.8
HC	6	6	0	1	0.5	Reef	31	44	3	6	3.7
HC	7	15	1	3	1.3	Reef	32	36	3	5	3.0
HC HC	8 9	14 7	1 0.5	2 1	1.2 0.6	Reef ShB	33 1	46 5	3 0	6 1	3.8
HC	9 10	7	0.5 0	3	0.6 0.6	ShB	2	5 6	0	1 1	0.4 0.5
HC	11	8	0.5	1	0.0	ShB	3	3	0	1	0.3
HC	12	8	0	2	0.7	ShB	4	1	0	0	0.0
HC	13	5	0	1	0.4	ShB	5	2	0	1	0.2
HC	14	3	0	1	0.3	ShB	6	2	0	1	0.2
HC	15	3	0	1	0.3	ShB	7	0	0	0	0.0
HC	16	10	0.5	2	0.8	ShB	8	2	0	1	0.2
HC	17	5	0	1	0.4	ShB	9	2	0	0	0.2
HC	18	10	1	2	0.8	ShB	10	4	0	1	0.3
HC	19 20	9	0.5 1	2	0.8	ShB	11	1	0	0	0.1
HC HC	20 21	14 7	1 0	2 2	1.2 0.6	ShB ShB	12 13	2 2	0 0	1 1	0.2 0.2
HC	22	9	0 1	2	0.8	ShB	13	2 6	0	2	0.2 0.5
HC	23	0	0	0	0.0	ShB	15	5	0	1	0.3
		-	-	-		0.10		-	-	•	0.1

Species: Macroclymenella stewartensis

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1 2 33 1 2 3 4 5 6	Total 3 2 0 1 4 0 1 4 0 1 4 0 1 4 0 1 4 12 6 7 1 4 3 3 3 3 26 24	Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Range 1 1 1 0 0 1 1 0 1 3 2 1 0 2 1 3 2 1 0 2 1 1 3 5 3 1 2 3	$\begin{array}{c} 0.3 \\ 0.2 \\ 0.2 \\ 0.0 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.0 \\ 0.1 \\ 0.3 \\ 1.0 \\ 0.5 \\ 0.6 \\ 0.1 \\ 0.3 \\ 0.6 \\ 2.4 \\ 2.8 \\ 2.8 \\ 0.3 \\ 2.2 \\ 2.0 \end{array}$
Whau Whau Whau	2 3 4	33 33 3	2.5 2.5 0	5 3 1	2.8 2.8 0.3
Whau	5	26	2	2	2.2
Whau	7	38	2 3	5	3.2
Whau	8	71	6	5	5.9
Whau	9	61	3.5	10	5.1
Whau	10	46	2 4	9	3.8
Whau	11	47		5	3.9
Whau	12	47	3	7	3.9
Whau Whau	13 14	26 45	2 3.5	4 7	2.2
Whau	14	45 31	3.5 2	5	3.8 2.6
Whau	16	36	3	6	3.0
Whau	17	24	1.5	4	2.0
Whau	18	36	3	5	3.0
Whau	19	30	2.5	4	2.5
Whau	20	58	4	6	4.8
Whau	21	31	2	5	2.6
Whau Whau	22 23	53 49	4.5 5	5 5	4.4 4.1
Whau	23 24	49 33	5 2.5	5	2.8
Whau	25	121	8	9	10.1
Whau	26	0	0	0	0.0
Whau	27	44	3.5	7	3.7
Whau	28	50	4.5	7	4.2
Whau	29	45 52	4	5	3.8
Whau	30 21	53	4.5 10	7	4.4
Whau Whau	31 32	108 102	10 8	8 9	9.0 8.5
Whau	33	89	6.5	11	0.5 7.4

Speci	es: Not	oamea	helmsi			Site	Series	Total 81	Median	Range	
S S H H H H H H H H H H H H H H H H H H	es: Not Series 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 3 1 2 3 3 1 2 3 4 5 6 7 8 9 10 11 2 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 3	oamea Total 34 39 20 143 150 133 86 83 58 92 106 95 100 95 101 60 95 100 95 63 44 56 161 173 104 148 170 168 71 31 136 44 26 43 173 245 208 189 132 182 116 173 83 102 99	$\begin{array}{c} \textbf{helmsi}\\ \textbf{Median}\\ 2\\ 1\\ 9.5\\ 9\\ 10.5\\ 6.5\\ 4\\ 6\\ 9.5\\ 8.5\\ 9\\ 9\\ 5\\ 6\\ 4\\ 7\\ 4\\ 4.5\\ 4.5\\ 4\\ 12.5\\ 9\\ 8.5\\ 8.5\\ 13\\ 11\\ 3.5\\ 2\\ 3.5\\ 13.5\\ 16.5\\ 7\\ 7\\ 13.5\\ 9\\ 17\\ 10.5\\ 8.5\\ 4\\ 6.5\\ 0\\ 13.5\\ 4\\ 6.5\\ 0\\ 13.5\\ 14\\ 4\\ 2\\ 7\\ 8\end{array}$	Range 6 9 4 22 14 12 10 13 17 9 15 8 20 9 10 8 7 10 6 8 19 13 15 13 5 16 4 7 24 25 15 12 22 17 8 10 12 13 17 15 8 20 9 10 8 7 10 6 8 19 13 15 13 5 16 4 7 24 25 15 12 22 17 8 10 12 12 12 12 12 12 12 12 12 12	$\begin{array}{c} \text{Mean}\\ 2.9\\ 3.3\\ 1.7\\ 11.9\\ 12.5\\ 11.1\\ 7.2\\ 6.9\\ 7.9\\ 9.2\\ 5.0\\ 7.9\\ 9.2\\ 5.0\\ 7.9\\ 5.3\\ 7.7\\ 4.4\\ 7\\ 13.4\\ 9.8\\ 8.9\\ 8.7\\ 12.3\\ 14.2\\ 14.0\\ 5.9\\ 2.6\\ 11.3\\ 3.7\\ 2.2\\ 3.6\\ 14.4\\ 17.3\\ 8.2\\ 15.8\\ 11.0\\ 15.2\\ 9.7\\ 9.9\\ 6.1\\ 7.3\\ 0.3\\ 13.5\\ 14.4\\ 6.9\\ 2.6\\ 8.3\\ \end{array}$	Site HCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Series 24 25 26 27 29 30 31 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 12 33 12 34 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 31 23 12 3 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 3 12 3 1 23 12 3 12 3 12 3 12	Total 81 137 68 61 64 188 298 109 70 76 5 2 10 6 2 9 5 4 13 2 4 2 1 3 0 2 2 4 1 0 1 2 3 1 1 0 1 3 1 3 0 0 2 2 4 10 12 3 1 10 0 6 2 9 5 4 13 2 4 2 1 0 70 76 5 2 10 6 2 9 5 4 13 2 4 13 2 4 2 9 5 4 13 2 4 13 2 4 13 0 2 2 4 1 9 5 2 10 6 2 9 5 4 13 2 4 1 3 0 2 2 4 1 9 5 2 1 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 9 5 2 8 1 1 3 0 2 2 4 1 9 5 2 8 1 1 3 9 9 5 2 8 1 1 3 9 9 8 8 1 1 1 9 9 8 1 1 9 9 8 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 9 9 8 1 1 1 1		Range 14 11 10 8 22 34 11 8 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	$\begin{array}{c} \text{Mean} \\ 6.8 \\ 11.4 \\ 5.7 \\ 5.1 \\ 5.3 \\ 15.7 \\ 24.8 \\ 9.1 \\ 5.8 \\ 6.3 \\ 0.2 \\ 0.8 \\ 0.5 \\ 0.2 \\ 0.8 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.1 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.1 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.1 \\ 0.3 $

Species: Notoamea helmsi

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12	Total 72 118 95 75 62 42 50 30 110 75 64 40 56 71 227 212 81 22 96 99 124 66 12 24 45 37 82 26 64	Median 5 11 6.5 4 2.5 3 0.5 6 5.5 3.5 5 1.5 3.5 5 1.5 3.5 5 1.5 3.5 5 8 8.5 3.5 1 4 3 5 8 8 5 3.5 1 4 3 5 5 1 4 1 3 5 5 5 1 4 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Range 12 17 15 17 9 9 12 10 23 11 13 10 11 12 41 31 9 6 19 9 11 17 2 5 6 7 6 5 5 10	$\begin{array}{c} 6.0\\ 9.8\\ 7.9\\ 6.3\\ 5.2\\ 3.5\\ 4.2\\ 2.5\\ 9.2\\ 6.3\\ 5.3\\ 3.3\\ 4.7\\ 5.9\\ 18.9\\ 17.7\\ 6.8\\ 1.8\\ 8.0\\ 8.3\\ 10.3\\ 5.5\\ 1.0\\ 2.0\\ 3.7\\ 3.8\\ 3.1\\ 6.8\\ 2.2\\ 5.3 \end{array}$
Whau	7	44	4	6	3.7
Whau	13	42	3	7	3.5
Whau Whau	14 15	47 44	3.5 3.5	6 6	3.9 3.7
Whau	16	18	2	2	1.5
Whau	17	42	2	12	3.5
Whau	18	29	1	8	2.4
Whau Whau	19 20	34 43	3 2.5	4 8	2.8 3.6
Whau	21	44	3.5	6	3.7
Whau	22	19	1	5	1.6
Whau	23	12	1	2	1.0
Whau Whau	24 25	14 6	0 0	5 2	1.2 0.5
Whau	26	12	0.5	2	1.0
Whau	27	18	1	4	1.5
Whau	28	22	1.5	3 7	1.8
Whau Whau	29 30	34 47	2 1	7 16	2.8 3.9
Whau	31	30	3	4	2.5
Whau	32	40	2	5	3.3
Whau	33	11	0	4	0.9

Strice Strice Total Median Range Mean HC 25 1133 100.5 30.7 HBV 1 290 21 43 24.2 HC 26 959 81 107 79.9 HBV 3 527 36 70 43.9 HC 28 1014 82.5 86 84.5 HBV 4 646 55 48 53.8 HC 29 1116 104.5 37 70 109.8 HBV 6 6639 59 55 53.3 HC 32 1168 100.5 40 97.3 HBV 8 667 66.5 68 55.6 Reef 1 240 18.2 20.0 97.3 HBV 10 712 54 48 59.4 Reef 33 101 80.5 50.6 85.5 101 73.3 HBV 10 712 54 66.1	Species: Nucula hartvigiana					Site HC	Series 24	Total 1064	Median 92.5	Range 67	Mean 88.7	
HBV 1 290 21 43 242 HC 26 959 81 107 79.9 HBV 3 527 36 70 43.9 HC 22 1014 82.5 86 84.5 HBV 4 646 55 43 38.8 HC 29 1317 109.7 70.10.8 HBV 6 639 55 53.3 HC 31 1061 91 42 88.4 HBV 7 654 55 54.3 HC 33 1011 80 55 84.3 HBV 8 659 61 56 54.9 HC 33 1011 80 55 84.3 HBV 10 712 54 48 59.4 447 33 71 73.3 HBV 11 660 57 63.4 Reef 5 661 50.5 63 55.1 HBV </td <td>Site</td> <td>Series</td> <td>Total</td> <td>Median</td> <td>Range</td> <td>Mean</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Site	Series	Total	Median	Range	Mean						
HBV 3 527 36 70 43.9 HC 28 1014 82.5 86 45.3 HBV 4 646 55 43.3 HC 30 1165 94.5 37 97.1 HBV 6 639 59 55 53.3 HC 31 1061 91 42 88.4 HBV 7 654 55 61 54.9 HC 33 1011 80 55 20.0 HBV 10 712 54 48 59.4 Reef 1 447 33 71 73.3 HBV 11 667 56 64 55.0 Reef 3 447 33 71 43.0 HBV 13 817 72 67 68.1 Reef 6 614 43.5 87.3 33.0 42 25.5 HBV 16 586 50.5 58 52.9 Re												
HBV 4 646 55 48 53.8 HC 29 1317 109.8 70 97.1 HBV 6 639 55 53.3 HC 31 1061 91 42 88.4 HBV 7 654 55 41 54.5 HC 32 1168 100.5 40 87.3 HBV 9 667 56.5 64 55.6 Reef 1 240 18 25 0.0 HBV 10 712 54 48 59.4 Reef 2 880 82.5 101 73.3 HBV 12 600 48.5 38.5 50.0 Reef 3 30 42 25.5 63 33.3 HBV 14 760 60 57 63.4 Reef 10 302 22.5 44 30.3 30 42 22.3 43.3 76 33.2.8 HBV 15	HBV			30.5	59		HC	27	1029	85	43	85.8
HBV 5 520 38.5 500 43.3 HC 30 1165 94.5 37 97.1 HBV 6 639 59 55 53.3 HC 31 1061 91 42 88.4 HBV 8 659 61 56 54.9 HC 33 1011 80 55 84.3 HBV 10 712 54 48 59.4 Reef 2 880 82.5 101 73.3 HBV 11 660 55 64 55.6 Reef 3 447 33 74.5 63 65.8 HBV 13 817 72 67 68.1 Reef 516 516 41.5 87 43.0 HBV 15 526 46 444 43.8 Reef 1 300 42 25.3 25.8 25.5 56 33.3 30.4 42 53.3 25.5												
HBV 6 639 59 55 53.3 HC 31 1061 91 42 88.43 HBV 8 659 61 56 54.5 HC 32 1168 100.5 40 97.3 HBV 9 667 56.5 68 55.6 Reef 1 240 18 25 20.0 HBV 11 667 55 64 55.6 Reef 3 447 33 71 73.3 HBV 12 600 48.5 38.5 50.0 Reef 4 789 74.5 63 55.1 HBV 13 817 72 67 68.1 Reef 6 516 41.5 87 43.0 HBV 13 817 72 67 68.1 Reef 14 302 23.5 44.5 HBV 16 556 50.5 58 52.9 Reef 11												
HBV 7 654 55 41 54.5 HC 32 1168 100.5 40 97.3 HBV 9 667 56.5 68 55.6 Reef 1 240 18 25 20.0 HBV 10 712 54 48 59.4 Reef 2 880 82.5 1011 73.3 HBV 11 667 55.6 64 55.6 Reef 3 447 33 71 37.3 HBV 12 600 48.5 38.5 50.0 Reef 4 789 74.5 63 65.8 HBV 15 526 46 444 43.8 Reef 7 447 32.5 63 32.8 HBV 16 586 50.5 58 52.9 Reef 13 022 33.0 42 25.3 HBV 18 796 73 54 65.1 Reef <td></td>												
HBV 8 659 61 56 54.9 HC 33 1011 80 55 84.3 HBV 10 712 54 48 59.4 Reef 1 240 18 25 20.0 HBV 11 667 55 64 55.6 Reef 3 447 33 71.3 37.3 HBV 12 600 48.5 38.5 50.0 Reef 5 661 50.5 63 55.1 HBV 13 817 72 67 68.1 Reef 5 661 50.5 63 55.1 HBV 16 566 50 41 48.8 Reef 8 394 37 63 32.5 HBV 16 566 50.5 58 52.9 Reef 11 302 23.5 44 25.2 HBV 21 600 43 72 50.0 Reef												
HBV 9 667 56.5 68 55.6 Reef 1 240 18 25 20.0 HBV 10 712 54 48 59.4 Reef 2 880 82.5 101 73.3 HBV 11 667 55.6 44 55.6 Reef 3 447 33 71 37.3 HBV 14 760 60 57 63.4 Reef 5 661 50.5 63 32.8 HBV 15 526 46 44 43.8 Reef 7 447 32.5 56 37.3 HBV 16 586 50.5 54 63.3 39.7 Reef 9 303 30 42 25.5 HBV 17 476 38.5 50.5 Reef 11 302 23.5 54 22.2 HBV 21 600 43 72 50.5 Reef												
HBV 10 712 54 48 59.4 Reef 2 880 82.5 101 73.3 HBV 12 600 48.5 38.5 50.0 Reef 3 447 33 71 37.3 HBV 12 600 48.5 38.5 50.0 Reef 5 661 50.5 63 45.1 HBV 15 526 46 44 43.8 Reef 7 447 32.5 56 37.3 HBV 16 586 50 41 48.8 Reef 8 394 37 63 32.8 HBV 17 476 38.5 43 39.7 Reef 10 306 29.5 53 25.5 HBV 19 635 50.5 58 52.9 Reef 13 275 24.5 54 22.9 HBV 21 601 49.5 55.6 Reef 1												
HBV 11 667 55 64 55.6 Reef 3 447 33 71 37.3 HBV 12 600 48.5 38.5 50.0 Reef 4 789 74.5 63 65.8 HBV 13 817 72 67 68.1 Reef 5 661 41.5 87 43.0 HBV 16 586 50 41 48.8 Reef 7 447 32.5 56 37.3 HBV 16 586 50.5 58 52.9 Reef 10 306 29 53 31 15.9 HBV 21 600 43 72 50.0 Reef 14 220 21.5 544 22.2 24.5 54 22.2 14.0 18.4 HBV 22 643 50.5 58 50.5 Reef 14 220 21.5 54 22.9 HBV 23												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HBV	11	667	55	64	55.6			447			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
HBV 17 476 38.5 43 39.7 Reef 9 303 30 42 25.3 HBV 18 796 73 54 66.3 Reef 10 306 29 53 25.5 HBV 20 704 56 36 58.7 Reef 11 302 23.5 54 25.2 HBV 20 704 56 36 58.7 Reef 12 191 16.5 31 15.9 HBV 21 600 43 72 50.0 Reef 12 191 16.5 31 15.9 HBV 23 661 49.5 52 55.5 64 49.3 Reef 15 280 23.5 37 23.3 HBV 26 541 44.5 40 45.1 Reef 19 122 4.5 27 10.2 HBV 26 541 44.5 33												
HBV 18 796 73 54 66.3 Reef 10 306 29 53 25.5 HBV 19 635 50.5 58 52.9 Reef 11 302 23.5 44 25.2 HBV 20 704 56 36 58.7 Reef 12 191 16.5 31 15.9 HBV 22 643 50.5 58 50.5 Reef 14 220 21.4 40 18.4 HBV 23 661 49.5 62 55.1 Reef 16 199 12 34 16.6 HBV 24 592 55.5 64 49.3 Reef 17 124 4.5 10.2 10.3 HBV 26 541 44.5 40 45.1 Reef 12 4.5 12 10.2 HBV 28 503 40.5 57 41.9 Reef												
HBV 19 635 50.5 58 52.9 Reef 11 302 23.5 44 25.2 HBV 20 704 56 36 58.7 Reef 12 191 16.5 31 15.9 HBV 22 643 50.5 58 50.5 Reef 14 220 21 40 18.4 HBV 23 661 49.5 62 55.1 Reef 15 280 23.5 37 23.3 HBV 24 592 55.5 64 49.3 Reef 17 124 4.5 22 10.3 HBV 26 541 44.5 40 45.1 Reef 18 78 4.5 14 6.5 HBV 28 503 40.5 57 41.9 Reef 21 64 2.5 15 5.3 HBV 28 532 40 53 444 53												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
HBV 22 643 50.5 58 50.5 Reef 14 220 21 40 18.4 HBV 23 661 49.5 62 55.1 Reef 15 280 23.5 37 23.3 HBV 24 592 55.5 64 49.3 Reef 16 199 12 34 16.6 HBV 25 525 48.5 70 43.8 Reef 18 78 4.5 14 6.5 HBV 26 541 44.5 40 45.1 Reef 19 122 4.5 14 6.5 HBV 26 531 40.5 53 44.3 Reef 21 64 2.5 15 5.3 HBV 30 461 35.4 64.2 Reef 23 63 3 13 5.3 HBV 31 640.5 51.3 74 7.8 Reef 23												
HBV 23 661 49.5 62 55.1 Reef 15 280 23.5 37 23.3 HBV 24 592 55.5 64 49.3 Reef 16 199 12 34 16.6 HBV 25 525 48.5 70 43.8 Reef 17 124 4.5 22 10.3 HBV 26 541 44.5 40 45.1 Reef 19 122 4.5 27 10.2 HBV 28 503 40.5 57 41.9 Reef 20 108 6.5 20 9.0 HBV 29 532 40 53 44.3 Reef 21 61 2.4 10.1 HBV 31 640 53.5 44 53.3 Reef 26 59 1 14 4.9 HBV 33 574 47.5 37 47.8 Reef 25 <td></td>												
HBV 24 592 55.5 64 49.3 Reef 16 199 12 34 16.6 HBV 25 525 48.5 70 43.8 Reef 17 124 4.5 22 10.3 HBV 26 541 44.5 40 45.1 Reef 18 78 4.5 14 6.5 HBV 27 683 59.5 49 56.9 Reef 19 122 4.5 27 10.2 HBV 28 503 40.5 57 41.9 Reef 20 108 6.5 20 9.0 HBV 30 461 35.4 46 38.4 Reef 22 121 6.5 24 10.1 HBV 32 554 41.5 62 46.2 Reef 24 73 1.5 10 6.1 HBV 33 574 47.5 37 47.8 Reef </td <td></td>												
HBV 25 525 48.5 70 43.8 Reef 17 124 4.5 22 10.3 HBV 26 541 44.5 40 45.1 Reef 18 78 4.5 14 6.5 HBV 27 683 59.5 49 56.9 Reef 19 122 4.5 27 10.2 HBV 28 503 40.5 57 41.9 Reef 21 64 2.5 15 5.3 HBV 30 461 35 46 38.4 Reef 22 121 6.5 24 10.1 HBV 30 461 35. 44 53.3 Reef 23 63 3 13 5.3 HBV 32 554 41.5 62 46.2 Reef 23 63 3 13 5.3 HBV 32 554 41.5 37 47.8 Reef 26 59 1 14 4.9 HC 1150 86.5												
HBV 26 541 44.5 40 45.1 Reef 18 78 4.5 14 6.5 HBV 27 683 59.5 49 56.9 Reef 19 122 4.5 27 10.2 HBV 28 503 40.5 57 41.9 Reef 20 108 6.5 20 9.0 HBV 29 532 40 53 44.3 Reef 21 64 2.5 15 5.3 HBV 30 461 35 46 38.4 Reef 21 61 6.5 24 10.1 HBV 32 554 41.5 62 46.2 Reef 23 63 3 13 5.3 HC 1 1150 86.5 103 95.8 Reef 25 28 0 5 2.3 HC 1 1150 86.5 103 95.8 Reef 28 51 0 14 4.3 HC 1 1422 115 <td></td>												
HBV 27 683 59.5 49 56.9 Reef 19 122 4.5 27 10.2 HBV 28 503 40.5 57 41.9 Reef 20 108 6.5 20 9.0 HBV 29 532 40 53 44.3 Reef 21 64 2.5 15 5.3 HBV 30 461 35.5 44 53.3 Reef 22 121 6.5 24 10.1 HBV 32 554 41.5 62 46.2 Reef 23 63 3 13 5.3 HBV 32 554 41.5 62 46.2 Reef 24 73 1.5 10 6.1 HBV 33 574 47.5 37 47.8 Reef 25 28 0 5 2.3 HC 1 1150 86.5 103 95.8 Reef 28 51 0 14 4.9 HC 1 1432 118.												
HBV 28 503 40.5 57 41.9 Reef 20 108 6.5 20 9.0 HBV 29 532 40 53 44.3 Reef 21 64 2.5 15 5.3 HBV 30 461 35 46 38.4 Reef 22 121 6.5 24 10.1 HBV 31 640 53.5 44 53.3 Reef 23 63 3 13 5.3 HBV 32 554 41.5 62 46.2 Reef 26 59 1 14 4.9 HC 1 1150 86.5 103 95.8 Reef 26 59 1 14 4.3 HC 2 1059 84 59 88.3 Reef 28 51 0 14 4.3 HC 3 967 80 45 80.6 Reef 30												
HBV 29 532 40 53 44.3 Reef 21 64 2.5 15 5.3 HBV 30 461 35 46 38.4 Reef 22 121 6.5 24 10.1 HBV 31 640 53.5 44 53.3 Reef 23 63 3 13 5.3 HBV 32 554 41.5 62 46.2 Reef 24 73 1.5 10 6.1 HBV 33 574 47.5 37 47.8 Reef 25 28 0 5 2.3 HC 1 1150 86.5 103 95.8 Reef 26 59 1 14 4.9 HC 2 1059 84 59 88.3 Reef 27 35 0.5 10 2.9 HC 3 967 80 45 80.6 Reef 28 51 0 14 4.3 HC 5 1512 127 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
HBV 31 640 53.5 44 53.3 Reef 23 63 3 13 5.3 HBV 32 554 41.5 62 46.2 Reef 24 73 1.5 10 6.1 HBV 33 574 47.5 37 47.8 Reef 25 28 0 5 2.3 HC 1 1150 86.5 103 95.8 Reef 26 59 1 14 4.9 HC 2 1059 84 59 88.3 Reef 27 35 0.5 10 2.9 HC 3 967 80 45 80.6 Reef 28 51 0 14 4.3 HC 5 1512 127 45 126.0 Reef 30 40 1 10 3.3 HC 6 1487 124.5 89 123.9 Reef 31 3 0 1 0.3 HC 7 1521 131 88<	HBV		532	40		44.3						
HBV 32 554 41.5 62 46.2 Reef 24 73 1.5 10 6.1 HBV 33 574 47.5 37 47.8 Reef 25 28 0 5 2.3 HC 1 1150 86.5 103 95.8 Reef 26 59 1 14 4.9 HC 2 1059 84 59 88.3 Reef 27 35 0.5 10 2.9 HC 3 967 80 45 80.6 Reef 28 51 0 14 4.3 HC 4 1432 118.5 105 119.3 Reef 28 51 0 1 0 3.3 HC 6 1487 124.5 89 123.9 Reef 32 14 1 2 1.2 1 1.3 0 1 0.3 HC 7 1521 131 88 126.2 Reef 32 14 1 2 1.2							Reef					
HBV3357447.53747.8Reef2528052.3HC1115086.510395.8Reef26591144.9HC21059845988.3Reef27350.5102.9HC3967804580.6Reef28510144.3HC41432118.5105119.3Reef29512114.3HC5151212745126.0Reef30401103.3HC61487124.589123.9Reef313010.3HC7152113188126.8Reef3214121.2HC8150212042125.2Reef333010.3HC10150813188125.7ShB122318.53518.6HC10150813188125.5ShB3237121419.8HC11144611958120.5ShB3237121419.8HC11146615.55488.7ShB5414363134.5HC13106486.55488.7ShB5414<												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	1512			126.0	Reef	30		1	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
HC10150813188125.7ShB2237223519.8HC11144611958120.5ShB3237121419.8HC121130978994.2ShB444831.54037.3HC13106486.55488.7ShB5414363134.5HC141262101.541.5105.2ShB6408303234.0HC151527126.533127.3ShB728225.52723.5HC161151904795.9ShB828021.52023.3HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC11144611958120.5ShB3237121419.8HC121130978994.2ShB444831.54037.3HC13106486.55488.7ShB5414363134.5HC141262101.541.5105.2ShB6408303234.0HC151527126.533127.3ShB728225.52723.5HC161151904795.9ShB828021.52023.3HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC121130978994.2ShB444831.54037.3HC13106486.55488.7ShB5414363134.5HC141262101.541.5105.2ShB6408303234.0HC151527126.533127.3ShB728225.52723.5HC161151904795.9ShB828021.52023.3HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC13106486.55488.7ShB5414363134.5HC141262101.541.5105.2ShB6408303234.0HC151527126.533127.3ShB728225.52723.5HC161151904795.9ShB828021.52023.3HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC141262101.541.5105.2ShB6408303234.0HC151527126.533127.3ShB728225.52723.5HC161151904795.9ShB828021.52023.3HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC161151904795.9ShB828021.52023.3HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9							ShB			30	32	
HC17138312574115.3ShB924713.53820.6HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC18132711670110.6ShB10418313534.8HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC191242106142103.5ShB11389214632.4HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC20117892.54998.2ShB12482396240.2HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC211249101.542104.1ShB13171161714.3HC2211811033798.4ShB141069.5208.9												
HC 22 1181 103 37 98.4 ShB 14 106 9.5 20 8.9												

Species: Nucula hartvigiana cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 33 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 7 18 19 20 21 23 24 26 27 28 29 30 11 12 13 14 15 16 7 8 9 10 11 12 23 24 25 26 27 28 29 20 21 23 23 1 2 3 2 3 1 2 3 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	Total 327 256 234 99 218 124 205 99 105 34 20 65 66 20 703 811 435 1024 993 717 982 858 2671 385 8542 551 80 819 837 786 396 201 819 810 810 810 810 810 810 810 810 810 810	Median 24.5 17 20 4.5 10 8 1.5 4 4 1 2 3.5 2 1 55.5 136 28.5 94.5 94.5 94.5 94.5 94.5 94.5 94.5 94	Range 49 49 31 20 43 23 22 12 58 9 29 61 8 6 10 13 24 5 84 78 170 54 80 113 105 38 9 40 39 41 34 65 113 105 38 9 76 56 1 81 67 63 56 181 67 63 45 61 81 67 63 45 61 81 67 63 45 61 81 61 81 81 80 81 80 81 80 81 80 80 81 80 80 81 80 80 80 80 80 80 80 80 80 80 80 80 80	$\begin{array}{c} 27.3\\ 21.3\\ 19.5\\ 8.3\\ 18.2\\ 10.1\\ 7.0\\ 5.2\\ 17.1\\ 8.3\\ 8.8\\ 14.6\\ 2.8\\ 1.8\\ 5.0\\ 5.4\\ 5.5\\ 1.7\\ 58.6\\ 67.6\\ 134.7\\ 36.3\\ 92.5\\ 93.7\\ 82.8\\ 59.8\\ 81.8\\ 71.5\\ 45.2\\ 55.9\\ 45.9\\ 32.1\\ 65.5\\ 45.9\\ 32.1\\ 65.5\\ 46.5\\ 75.8\\ 68.3\\ 69.8\\ 59.7\\ 65.5\\ 33.1\\ 23.8\\ 19.3\\ 15.8\\ 19.3\\ 15.8\\ 19.3\\ 15.8\\ 18.0\\ 17.2\\ \end{array}$
Whau	25	190	9	36	15.8
Whau	26	216	10.5	43	18.0
Whau	28	296	12.5	43	24.7
Whau	29	339	14	65	28.3
Whau	30	444	25	81	37.0
Whau	31	337	21	71	28.1
Whau	32	286	13	71	23.8
Whau	33	317	15.5	68	26.4

Species: Paphies australis					Site	Series	Total	Median	Range		
0.4	C	T . (. 1	Matter	D	M	HC	24	0	0	0	0.0
Site	Series	Total	Median	Range		HC	25	0	0	0	0.0
HBV	1	46	3	8	3.9	HC	26	0	0	0	0.0
HBV	2	39	1.5	9	3.3	HC	27	0	0	0	0.0
HBV	3	46	3.5	7	3.8	HC	28	3	0	1	0.3
HBV	4	85	5.5	17	7.1	HC	29	0	0	0	0.0
HBV	5	37	4.5	5	3.1	HC	30	3	0	1	0.3
HBV	6	77	4	12	6.4	HC	31	0	0	0	0.0
HBV	7	38	2.5	6	3.2	HC	32	0	0	0	0.0
HBV	8	43	2	8	3.6	HC	33	0	0	0	0.0
HBV	9	57	0.5	24	4.8	Reef	1	0	0	0	0.0
HBV	10	60	2	18	5.0	Reef	2	0	0	0	0.0
HBV	11	31	1	8	2.6	Reef	3	0	0	0	0.0
HBV	12	48	3.5	9	4.0	Reef	4	0	0	0	0.0
HBV	13	23	1.5	5	1.9	Reef	5	1	0	0	0.1
HBV	14	62	2	7	5.2	Reef	6	1	0	0	0.1
HBV	15	89	4	21	7.4	Reef	7	3	0	1	0.3
HBV	16	65	4	13	5.4	Reef	8	0	0	0	0.0
HBV	17	21	1.5	3	1.8	Reef	9	0	0	0	0.0
HBV	18	39	2	10	3.3	Reef	10	0	0	0	0.0
HBV	19	54	3	7	4.5	Reef	11	0	0	0	0.0
HBV	20	57	1	18	4.8	Reef	12	2	Õ	1	0.2
HBV	21	12	0.5	3	1.0	Reef	13	1	0	0	0.1
HBV	22	38	3	7	3.2	Reef	14	0	0	Õ	0.0
HBV	23	26	1	5	2.2	Reef	15	0	0	0	0.0
HBV	24	49	1.5	11	4.1	Reef	16	0	0	0	0.0
HBV	25	51	3	10	4.3	Reef	17	0	0	0	0.0
HBV	26	70	3	9	5.8	Reef	18	0	0	0	0.0
HBV	27	66	3.5	12	5.5	Reef	19	0	0	0	0.0
HBV	28	41	2	9	3.4	Reef	20	0	0	0	0.0
HBV	29	75	3	12	6.3	Reef	21	0	0	0	0.0
HBV	30	43	1.5	10	3.6	Reef	22	0	0	0	0.0
HBV	31	45	1.0	11	3.8	Reef	23	0	0	0	0.0
HBV	32	38	1	3	3.2	Reef	24	5	0	2	0.4
HBV	33	16	0	3	1.3	Reef	25	0	0	0	0.0
HC	1	0	0	0	0.0	Reef	26	0	0	0	0.0
HC	2	0	0	0	0.0	Reef	27	0	0	0	0.0
HC	3	0	0	0	0.0	Reef	28	31	2	4	2.6
HC	4	0	0	0	0.0	Reef	29	0	0	0	0.0
HC	5	0	0	0	0.0	Reef	30	0	0	0	0.0
HC	6	1	0	0	0.0	Reef	31	0	0	0	0.0
HC	7	0	0	0	0.0	Reef	32	2	0	1	0.2
HC	8	0	0	0	0.0	Reef	33	3	0	1	0.2
HC	9	0	0	0	0.0	ShB	1	0	0	0	0.0
HC	10	0	0	0	0.0	ShB	2	0	0	0	0.0
HC	11	0	0	0	0.0	ShB	3	0	0	0	0.0
HC	12	0	0	0	0.0	ShB	4	0	0	0	0.0
HC	13	0	0	0	0.0	ShB	5	1	0	0	0.0
HC	14	0	0	0	0.0	ShB	6	1		0	0.1
HC	15								0		
HC	15 16	0 0	0 0	0 0	0.0 0.0	ShB ShB	7 8	2	0	1 0	0.2 0.1
								1	0		
HC	17 19	1	0	0	0.1	ShB	9 10	0	0	0	0.0
HC	18 10	0	0	0	0.0	ShB	10	0	0	0	0.0
HC	19 20	0	0	0	0.0	ShB	11	0	0	0	0.0
HC	20	0	0	0	0.0	ShB	12	2	0	0	0.2
HC	21	0	0	0	0.0	ShB	13	3	0	1	0.3
HC	22	0	0	0	0.0	ShB	14 15	0	0	0	0.0
HC	23	0	0	0	0.0	ShB	15	0	0	0	0.0

Species: Paphies australis cont.

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 20 21 22 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 23 24 25 26 27 28 29 30 31 23 4 5 6 7 8 9 10 11 12 33 12 33 12 34 5 6 7 8 9 10 11 12 13 14 5 16 7 18 9 10 11 12 23 24 25 26 27 28 29 30 12 31 23 12 31 12 34 5 6 7 8 9 10 11 12 13 14 5 16 7 18 19 20 21 23 23 12 23 12 23 10 21 23 23 12 23 12 23 12 23 12 23 12 23 12 23 12 23 12 23 12 23 24 25 26 7 8 9 10 11 20 21 22 23 23 23 23 23 23 23 23 23	$\begin{array}{c} {\rm Total} \\ 1 \\ 7 \\ 0 \\ 2 \\ 2 \\ 0 \\ 0 \\ 7 \\ 1 \\ 1 \\ 0 \\ 1 \\ 5 \\ 0 \\ 1 \\ 1 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Range 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0.6 0.2 0.2 0.0 0.0 0.0 0.1 0.0
Whau Whau Whau Whau Whau Whau Whau Whau	16 17 18 19 20 21 22 23 24 25 26 27 28	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0 0 0 0	0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Whau Whau Whau Whau Whau	29 30 31 32 33	5 4 0 0 4	0 0 0 0	1 1 0 0 1	0.4 0.3 0.0 0.0 0.3

Species: Zeacumantus lutulentus				Site HC	Series 24	Total 39	Median 3	Range 7	Mean 3.3		
Site	Series	Total	Median	Range	Mean	HC	24 25	21	3 1.5	3	1.8
HBV	1	2	0	0	0.2	HC	26	27	2	4	2.3
HBV	2	1	Ő	Ő	0.1	HC	27	26	2	4	2.2
HBV	3	0	0	Õ	0.0	HC	28	30	1	5	2.5
HBV	4	0	0	0	0.0	HC	29	52	4	5	4.3
HBV	5	0	0	0	0.0	HC	30	41	2	8	3.4
HBV	6	0	0	0	0.0	HC	31	55	3.5	7	4.6
HBV	7	0	0	0	0.0	HC	32	0	0	0	0.0
HBV	8	0	0	0	0.0	HC	33	65	5	7	5.4
HBV	9	1	0	0	0.1	Reef	1	25	2	4	2.1
HBV	10	0	0	0	0.0	Reef	2	8	0	2	0.7
HBV HBV	11 12	0	0	0	0.0	Reef	3	31	2	5	2.6
нвv HBV	12	0 0	0 0	0 0	0.0 0.0	Reef Reef	4 5	11 0	0 0	2 0	0.9 0.0
HBV	14	3	0	1	0.0	Reef	6	2	0	1	0.0
HBV	15	0	0	0	0.0	Reef	7	0	0	0	0.0
HBV	16	2	0 0	1	0.2	Reef	8	2	0 0	1	0.2
HBV	17	7	0.5	1	0.6	Reef	9	2	0	1	0.2
HBV	18	1	0	0	0.1	Reef	10	3	0	1	0.3
HBV	19	4	0	2	0.3	Reef	11	4	0	1	0.3
HBV	20	3	0	1	0.3	Reef	12	0	0	0	0.0
HBV	21	5	0	1	0.4	Reef	13	0	0	0	0.0
HBV	22	1	0	0	0.1	Reef	14	9	0	3.5	0.8
HBV	23	0	0	0	0.0	Reef	15	15	1	3	1.3
HBV HBV	24 25	11 11	0.5 0	3 3	0.9 0.9	Reef Reef	16 17	10 17	1 1	1 4	0.8 1.4
HBV	25 26	7	0	2	0.9 0.6	Reef	18	7	0	4	0.6
HBV	20	, 16	1	5	1.3	Reef	19	, 11	1	2	0.0
HBV	28	19	1	3	1.6	Reef	20	14	0.5	3	1.2
HBV	29	10	1	2	0.8	Reef	21	18	1	4	1.5
HBV	30	18	2	2	1.5	Reef	22	4	0	1	0.3
HBV	31	20	1	4	1.7	Reef	23	21	2	3	1.8
HBV	32	0	0	0	0.0	Reef	24	14	1	4	1.2
HBV	33	22	0.5	5	1.8	Reef	25	11	0.5	2	0.9
HC	1	0	0	0	0.0	Reef	26	18	1	3	1.5
HC	2	1	0	0	0.1	Reef	27	27	2	4	2.3
HC HC	3 4	0 1	0 0	0 0	0.0 0.1	Reef Reef	28 29	21 39	0.5 3.5	4 5	1.8 3.3
HC	5	1	0	0	0.1	Reef	29 30	42	3.5	8	3.5 3.5
HC	6	1	0	0	0.1	Reef	31	28	2	4	2.3
HC	7	1	0	Õ	0.1	Reef	32	2	0	1	0.2
HC	8	0	0	0	0.0	Reef	33	0	0	0	0.0
HC	9	0	0	0	0.0	ShB	1	0	0	0	0.0
HC	10	3	0	1	0.3	ShB	2	0	0	0	0.0
HC	11	5	0	1	0.4	ShB	3	0	0	0	0.0
HC	12	2	0	0	0.2	ShB	4	0	0	0	0.0
HC	13	0	0	0	0.0	ShB	5	0	0	0	0.0
HC HC	14 15	0 9	0 0	0 2	0.0 0.8	ShB ShB	6 7	0	0	0	0.0
HC	16	9 5	0	2 1	0.8 0.4	ShB	8	0 0	0 0	0 0	0.0 0.0
HC	17	13	1	2	1.1	ShB	9	0	0	0	0.0
HC	18	14	1	2	1.2	ShB	10	Õ	Õ	Ő	0.0
HC	19	6	0	1	0.5	ShB	11	1	0	0	0.1
HC	20	9	0	2	0.8	ShB	12	0	0	0	0.0
HC	21	27	1.5	5	2.3	ShB	13	0	0	0	0.0
HC	22	16	1.5	3	1.3	ShB	14	0	0	0	0.0
HC	23	36	2.5	6	3.0	ShB	15	0	0	0	0.0

Species: Zeacumantus lutulentus

Site ShB ShB ShB ShB ShB ShB ShB ShB ShB ShB	Series 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Total 0 0 0 0 0 0 0 1 3 1 0 1 2 0 1 2	Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Range 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2
ShB ShB Whau Whau Whau Whau Whau Whau Whau Whau	$\begin{array}{c} 32\\ 33\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 21\\ 22\\ 3\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 33 \end{array}$	0 0 1 9 1 3 1 4 1 0 0 0 4 1 6 0 3 2 4 0 2 8 7 7 5 9 5 0 8 7 6	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1$	0.0 0.0 0.1 0.8 0.1 1.1 0.0 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.0 0.5 0.5