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2 EXECUTIVE SUMMARY 
The purpose of this work was to develop new regional models of benthic ecosystem 

health for sheltered intertidal soft-sediment habitats on the basis of new and existing 

biological, chemical and physical data. More particularly, we wished to obtain a model 

whereby biological data from a new or monitored site could be used to classify that site 

in terms of its relative health. Data assembled from sites across the Auckland Region 

included mean abundances of 102 taxa from 84 sites, some of which were sampled in 

multiple years (from 2002-2005), yielding 95 samples. Models were developed using 81 

samples, with 14 samples being reserved to provide independent model validation. 

Physical data included grain size fractions and measures of furthest and closest wind 

exposure. Chemical data consisted of measures of concentrations (mg/kg) of copper, 

lead and zinc from the total sediment sample (< 500 μm) and also from weak acid 

extraction of the mud fraction (< 63 μm). The latter is generally considered a measure 

of bioavailable metals. 

Metal concentrations showed very high correlations with one another, so a single 

measure of the degree of pollution along a gradient across all samples was obtained 

using principal components analysis (PCA). This was done separately for the total 

sediment measures (PC1.500) and for the mud fraction measures (PC1.63), explaining 

94% and 95% of the variation in metal concentrations, respectively. If metal 

concentrations are sampled at a site, the degree of pollution can be determined directly 

by calculating the position of that new site, given these values, along each of these 

gradients. Clusters of 5 groups were identified along each gradient (in rank order from 1 

= healthy to 5 = polluted). Groups 4 and 5 along the gradients corresponded well with 

existing “amber” and “red” sediment quality guidelines of the Environmental Response 

Criteria (“ERC”) (ARC 2004). However, the PC axes developed here give greater 

resolution and discrimination among healthier sites (groups 1-3). 

Ecological assemblages generally reflected pollution gradients very well, all along their 

range. The present study identified clear methods for modeling the pollution gradient 

axes using ecological data. Canonical analysis of principal coordinates (CAP) was used 

to develop models using biotic dissimilarities among sites to predict their relative 

position along each of the pollution gradients (PC axes). The best models of benthic 

ecosystem health were those which obtained high canonical correlations with the 

pollution gradient(s) and which had a low level of error when new sites were tested 

(validation). 

The best overall ecological models were obtained using all sites together, regardless of 

their physical characteristics. The biotic assemblages had the strongest relationships 

with metal concentrations in the total sediment sample (PC1.500), rather than in the 

mud fraction (PC1.63), indicating that the biota do respond to all metals present in the 

sediments. Some of the models which used only subsets of taxa (a biologically derived 

“sensitivity” subset of 22 variables and a statistically derived “BVSTEP” subset of 16 

variables) performed virtually as well as the models which used all 102 taxa. Although 
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we do not feel that models using subsets can replace those which use all taxa, they 

may be used with fairly high confidence if the data for all taxa, for some reason, is 

lacking. 

The physical characteristics at each site (grain size fractions and exposure indices) were 

used to identify two physical groups of sites: those having coarser sediments and 

greater exposure (group C) and those having finer sediments and lesser exposure 

(group F). These two physical groupings correspond roughly to the Outer Zone and 

Settling Zone, respectively. Although no advantage was obtained by relating sites in 

group F alone to total metal concentrations (PC1.500), an excellent model was obtained 

by considering sites in group C alone and relating these to metal concentrations in the 

mud fraction (PC1.63). This supports previous studies suggesting that heavy metals are 

potentially more bioavailable in the mud fraction in Outer Zones.    

We recommend that the models we have developed here be used for monitoring and 

management purposes, as follows: 

 First, using all taxa, the position of a new site (or a monitored site) may be obtained 

along PC1.500 (and therefore into a group of relative pollution from 1-5) on the basis 

of the biotic dissimilarities between it and each of the existing sites, which we will 

call “the first classification”. 

 Second, if the site has relatively coarse sediments and greater relative exposure (i.e. 

if it occurs in group C based on its physical characteristics, or is in the Outer Zone), 

then its biotic dissimilarity with all other group C sites will yield its position along 

PC1.63 (and therefore, once again, into a group of relative pollution from 1-5), which 

we will call “the second classification”. 

 For sites in group C, the more cautious (i.e. the higher value) of the first and second 

classifications can be used as the assessment of the benthic health of the site. For 

sites in group F, the first classification can be used. 

 If metal concentration data from the site is available, then validation of the 

positioning of the site on each of PC1.63 and PC1.500 achieved by using biotic data 

can be obtained. The ERC criteria can also be examined and considered when metal 

data are available. 

A multivariate computer software package, PRIMER v6, with the add-on 

PERMANOVA+ (Anderson and Gorley – to be released in 2007), will be provided so that 

ARC managers can implement this strategy of modeling directly. 

These models rely on the high degree of correlation in the levels of the three metal 

concentrations co-occurring in sediments across the region. It is anticipated that, even 

though zinc and lead, in particular, are currently highly correlated (r = 0.95), these 

associations may change with contaminant control measures. For example, lead levels 

are expected to decrease across the region, due to the elimination of leaded petrol. Zinc 

levels may decrease over time with controls on metal cladding and roofing. Thus, we 

further recommend that, from time to time, the degree of correlation among the three 
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metal variables (copper, lead and zinc) be checked. If these correlations begin to 

decrease, then a re-development of the overall model which separates and 

distinguishes the three individual metals may be appropriate. 
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3 BACKGROUND and PURPOSE 
Auckland's Regional Discharge Project (RDP) is concerned with the management and 

treatment of stormwater and its effects on the biological quality of estuaries. Previous 

study and work to date has resulted in the development of quantitative models of 

ecosystem health (Anderson et al. 2002, ARC 2002, Hewitt et al. 2005). The purpose of 

the models was to provide a tool whereby new observational data of the community at 

a given site within the region could be classified, using only this biological information, 

into a category of relative ecosystem health. These previous models of “health” relied, 

however, on the definition of the rank pollution of sites along a gradient (where 1 = 

“healthy” and 5 = “polluted”), which was defined indirectly through the analysis of 

sediment chemistry and other existing knowledge by ARC managers. 

It was proposed that the benthic health model be refined and developed. More 

particularly, it was determined that an appropriate model should be based directly on 

quantitative information regarding the chemistry at particular sites. Also, sites that form 

the basis for models should be of varying sediment characteristics and varying 

concentrations of contaminants in intertidal estuarine environments that are 

interspersed and that span the region of interest. Thus, appropriate existing data were 

assembled and more data were collected, which included both biological information 

and the chemical and physical characteristics of sediments, in order to develop new 

models. In addition, extra sites were nominated as “validation sites” in order to 

explicitly and independently test the utility of the model(s) for active environmental 

management. 

The purpose of the present work is: 

1. to develop new regional models of benthic ecosystem health on the basis of 

new and existing biological, chemical and physical data; 

2. to obtain independent validation of the models using data from additional 

validation sites and 

3. to provide a recommendation demonstrating how benthic health can be 

assessed by ARC managers using new models. 
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4 SAMPLING METHODS 
The selection of sites, the methods of sampling and the processing of samples were all 

consistent with the methodologies provided in ARC TP 168: “Blueprint for monitoring 

urban receiving environments” (ARC 2002). 

4.1 Selection of sites 

Eighty-four sheltered intertidal soft-sediment sites were selected for sampling within 

the Auckland region which together fulfilled the following four criteria:  

 They covered the range of levels of pollutants present in these habitats;  

 They covered the range of grain sizes present in these habitats;  

 They were located on homogeneous unvegetated intertidal flats away from obvious 

discharge pipes, mangrove pneumatophores or low-tide channel banks; and  

 They covered the probable geographic range of future large-scale urban 

development. 

Data were drawn from several existing monitoring programmes (i.e., Kingett Mitchell 

Limited 2002, Funnell et al. 2003, Hewitt et al. 2004, Reed and Webster 2004, 

Williamson and Kelly 2003, Ford and Anderson 2005, Hewitt et al. 2006) and were also 

supplemented with targeted sampling of additional sites to complement existing 

information. Sites extended from Puhoi estuary in the north, to Clarkes Beach in the 

south (Fig. 1) and ranged in size from 100m × 50m to 100m × 100m. Each site was 

given a number for identification in the present study and all sites were sampled in 

October or November of 2002, 2004 or 2005. This time of year was chosen in order to 

minimise the potential effects of seasonal recruitment events on measures of biotic 

assemblages. At a few of the sites, samples of sediment texture were collected in May 

2006, and these were matched with biological samples from those same sites which 

had been obtained in late 2005 (see Appendix 1 for details). This was considered 

reasonable, as long-term monitoring data from many of these sites indicate a relatively 

high degree of stability in recorded ambient sediment texture for purposes of broad-

scale description (e.g., Ford and Anderson 2005). 

The resulting set of data included information from some sites for more than one year 

of sampling. For these sites, samples were retained and included in analyses only if 

they had complete and independent information for all sets of variables of interest (i.e., 

biology, sediment texture and chemistry). This resulted in a total of 95 sampling units 

(each uniquely identifiable as a particular site in a particular year) available for analysis in 

the present study and a complete list of all of these is given in Appendix 1. 

The process of modeling required two sets of samples: a modeling set and a validation 

set. We wished to use the maximum available information for the modeling set, yet still 
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to have some independent information from new sites in the region for validation of the 

models developed. The ARC (through its representative Dr Shane Kelly) were asked to 

provide a list of sites to be used for validation purposes. These were chosen according 

to the following criteria: 

 They were spatially interspersed with modeling sites; 

 They spanned the region of interest; and 

 They did not contain the most extreme values of any of the chemical or physical 

measures, so that they would not fall outside the bounds of what had been 

developed using modeling sites 

There were 14 validation sites selected as above, so 81 of the 95 samples remained for 

model development. These are indicated in Appendix 1 and Figure 1. 
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Fig. 1. Map of the Auckland region showing the 95 sites included in this investigation:
81 sites for developing models (in yellow) and 14 sites for model validation (in pink).
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4.2 Sampling of the biota 

At a given site and time, biological samples were taken using a circular corer measuring 

130 mm in diameter by 150 mm deep. Depending on the particular source for the data, 

the number of cores per site varied between n = 6 and n = 12, with most sites having 

sample sizes of n = 10. Cores were taken from random positions within each site. Each 

core was sieved using 0.5 mm mesh and the material retained on the sieve was 

preserved in 70% isopropyl alcohol with 0.01% rose bengal. All organisms were 

identified in the laboratory to the lowest practical taxonomic resolution. Some 

discrepancies in the level of taxonomic resolution used in different studies meant that 

the lumping of certain groups of organisms was necessary in order to proceed with a 

single combined dataset. Although such lumping is regrettable, the resulting full biotic 

dataset nevertheless did retain a total of 102 separate unique taxa for analysis. 

For all analyses relating the biota to environmental and chemical data, a single vector of 

abundance values across all taxa was required for each site and year of sampling. A list 

of the taxa and their frequencies of occurrence (out of 95 sampling units) is provided in 

Appendix 2. We used the vector of averages for each variable (i.e., the centroid) as an 

appropriate summary measure of the community structure at each site/time. Although 

the sample sizes differed (from n = 6 to 12, with most sites having n = 10), the degree 

of bias due to lack of detection of species for smaller sample sizes was considered 

negligible and there was no detectable bias in total average abundances for different 

sample sizes (see details in Appendix 3).  

4.3 Measures of sediment texture and exposure 

Samples of sediment texture were obtained using a core measuring 20 mm in diameter 

by 20 mm deep adjacent to each biological sample. The cores obtained from each site 

were combined prior to processing. Sediments were first digested in 6-10% hydrogen 

peroxide until bubbling ceased, then were momentarily boiled prior to wet-sieving. 

Sediments were wet-sieved through four sieves (2mm, 500μm, 250 μm and 63 μm) 

prior to decanting and drying of each fraction at 60°C. Five variables were used to 

describe sediment texture, consisting of the percentage composition by weight 

occurring in each of five classes: gravel (>2mm), coarse sand (2mm – 500 μm), medium 

sand (500μm - 250 μm), fine sand (250 μm – 63 μm) and silt and clay (<63 μm). Gravel 

and coarse sand were combined, resulting in four variables for subsequent analyses. 

In addition to the sediment texture, the degree of exposure of individual sites was also 

measured using two variables. Distances to the nearest and furthest land point were 

measured for each of 8 compass sectors (i.e, 0° ± 22.5º, 45º  ± 22.5º, and so on) for 

each site. Data from the Musik Point wind station from 2002 - 2005 were compiled into 

a frequency/strength histogram for each of the compass sectors. These distances were 

multiplied by the frequency/strength values for each compass sector and then 

summed. The values obtained for each of these two variables were scaled from 0-100 
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by taking them as a percentage of the largest value obtained across all sites. The two 

resulting variables are referred to hereafter as furthest wind exposure (FWE) and 

closest wind exposure (CWE). In the case of FWE, an effectively infinite distance for 

one of the fetch values resulted in an extremely large measure at one of the sites (site 

31, Mangemangeroa B), which appeared as an outlier (with an FWE value of 100) 

compared to all of the other values in the dataset for that variable (which were all less 

than 19). This outlier was therefore given an arbitrary value of 20, retaining its ranking 

as the largest in the dataset, but without unduly affecting the nature of the distribution 

of values for that variable.  

4.4 Sampling of heavy metals 

At a given site and time, sediment samples were collected to a depth of 2 cm using a 

scoop made from a square unused polyethylene bottle for analysis of the heavy metals 

copper (Cu), lead (Pb) and zinc (Zn). In some cases, a sample was taken alongside each 

biological core and these were then combined to obtain a single composite 

representative sample. In most cases, however, metals were sampled separately in a 

20 m × 50 m area adjacent to biologically sampled sites. There were three replicates 

per site, and each replicate was made up of 10 sub-samples taken every 2 m along the 

length of the site and assigned in a sequential manner to the three replicates (e.g., ARC 

2004). Thus, each composited replicate contained sub-samples that covered the entire 

spatial area of the site. Metal concentrations for each replicate were assessed using 

two techniques: (i) weak acid digestion in 2 M HCl of the <63 μm (mud) fraction at 

room temperature and (ii) strong acid digestion of the freeze dried < 500 μm (total) 

sediment fraction in aqua regia (HCl/HNO3) at 100-110°C. (See p. 20 of the Blueprint 

document (ARC 2004) for more details.) Mean values of the three replicates obtained 

for each site were then used in subsequent analyses.  

The mud fraction (< 63 μm) is thought to be the most ecologically relevant component 

of sediments in terms of contaminants. The metal concentrations obtained from weak 

acid digestion of this fraction should broadly correlate with bioavailable amounts of 

contaminants. More particularly, this measure is intended to reflect the metals that 

would be available were fine sediments to be ingested and digested in a weak acid 

environment inside organisms. However, while the majority of particles ingested by 

macrofauna are < 63 μm, larger sized particles (up to 500 μm) may be ingested.  Strong 

acid digestion of the whole sample will effectively extract all of the metals that are 

present and bound to the surfaces of sediment particles. This therefore provides a 

measure of the total amount of metal in those sediments, without presuming the 

nature or extent of the bioavailability of those metals. Either or both of these sets of 

measures could prove useful for assessing ecosystem health in these habitats.   
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5 STATISTICAL METHODS 
An outline of the logical flow of statistical methods used for this investigation is 

provided as a flow-chart in Fig. 2, for reference. 

 

Metal Concentrations:
Diagnostics, Find optimal

transformations

Derive a
pollution gradient

using PCA

Derive rank
pollution groupings
using clustering and
k-means partitioning

Derive a
pollution gradient

using PCA

Derive rank
pollution groupings
using clustering and
k-means partitioning

Modelling:
Relate pollution gradients
and groupings to Biota

using CAP
Find subsets of

taxa driving
relationships
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to subsets of Biota (CAP)
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Relate pollution gradients
to Biota separately for
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using CAP
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(BVSTEP, DISTLM)

Modelling of subsets:
Relate pollution gradients

to subsets of Biota
separately for different
physical groups (CAP)

Validation:
Use independent data to

assess model prediction
and compare

model performance

Fig. 2. Flowchart showing an outline of the logical flow of statistical analyses for the
modelling (in blue) and validation (in red) procedures used in this investigation.  
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5.1 Pollution gradient based on metal concentrations 

The individual distributions of concentrations of metals (Cu, Pb and Zn) in the 81 

samples to be used for modeling were investigated using the R computer program (R 

Development Core Team 2005). These distributions were found to be strongly right-

skewed, for both the <63 μm fraction and whole sample (<500 μm) values (see 

Appendix 4). Thus, before further analysis, an optimal transformation on the basis of the 

Box-Cox power series (Box and Cox 1964, Venables and Ripley 2002) was sought for 

each variable, which would render the data as close to normally distributed as possible 

to facilitate modeling. The Box-Cox power series transforms a variable y to 

pyy p /)1( −=′  for a given power p to obtain a more symmetric and normal 

distribution. For p = 0, the transformation is )ln(yy =′ . These equations rely on the 

values of y to be strictly positive, i.e. 0>y . More generally, one can use 

pyy p /)1)(( −+=′ λ  (and )ln( λ+=′ yy  in the case of p = 0), for situations where 

λ−>y . In the present investigation, to allow for zero values, we used λ = 1. These 

power transformations are monotonic, which means they do not change the rank-order 

of the data points. To find an optimal transformation for a given variable, the log-

likelihood of the normal distribution for the data is calculated for a series of values of p, 

and an optimal value for p is chosen to achieve normality where the maximum is 

achieved (i.e. the maximum likelihood). In the present case, optimal values for the 

power transformation ranged between 0.12 and 0.37; however, the natural log 

transformation ( )ln(yy =′ ) also resulted in more symmetrical unimodal distributions of 

the metal concentration variables in all cases (Appendix 4). Furthermore, principal 

component analyses done using logged data versus optimally power-transformed data 

yielded extremely similar results. Therefore, for simplicity in interpretation and also to 

retain the ability to back-transform results to original values with relative ease, log metal 

concentrations were used in all subsequent analyses. 

There were very strong correlations among the three log metal concentration variables 

for both datasets. For the <63μm dataset, the correlations were: rCu,Pb = 0.90, rCu,Zn = 

0.93 and rPb,Zn = 0.95; for the <500μm dataset, the correlations were: : rCu,Pb = 0.88, rCu,Zn 

= 0.91 and rPb,Zn = 0.94. It was therefore logical, in each case, to seek a single variable 

which would characterise an overall pollution gradient corresponding to increases in the 

concentrations of all three metals in the field. Thus, principal component analyses 

(PCAs) were done for each of the <63μm and <500μm datasets (81 samples) on the 

basis of log-transformed metal concentrations, using the PRIMER v6 computer program 

(Clarke and Gorley 2006). Due to the fact that the three log metal concentration 

variables (in each case) were on the same measurement scale and in the same units, 

PCAs were done on raw, rather than normalized data. Analyses based on the logged 

data versus on normalized logged data made no practical difference to the results. By 

doing the analysis on raw (logged) variables, we retained the relative ease of placing a 
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new (validation) object into the PCA space on the basis of the original metal 

concentrations measured at a site. 

5.2 Analyses to identify pollution groupings 

Rank-order groupings along any identified pollution gradient would be a useful tool for 

classifying sites in the context of environmental management. Three methods were 

used to identify possible groupings. Hierarchical agglomerative group-average clustering 

was done in PRIMER to obtain a dendrogram of samples on the basis of Euclidean 

distances using the three log metal concentration variables. Hierarchical clustering 

begins with each individual sample being separate. The two samples having the 

smallest Euclidean distance are joined together. The algorithm then progressively joins 

individual samples and, subsequently, groups of samples, in a hierarchical fashion, 

using the criterion of the minimum group-average distance. Once the dendrogram was 

complete, groupings were then identified using two methods: by taking an arbitrary 

slice through the dendrogram at a given distance value or by using similarity profiles 

(SIMPROF, e.g., Potter et al. 2001), as provided in PRIMER. SIMPROF calculates rank 

profiles of similarities among samples and determines the statistical significance of 

each individual split in a dendrogram on this basis using a permutation technique. The 

shape of the similarity profile under a true null hypothesis of no inherent structure 

among samples that would warrant a split is generated by permuting the values for 

each variable independently across all samples involved in that split. The essential 

concept here is that correlation structure among variables generates inherent structure 

among samples. For more details, see Potter et al. (2001) and Clarke and Gorley (2006). 

As for the PCAs above, all analyses were done separately for the <63 μm and <500 μm 

datasets. 

In addition to the “slice” and SIMPROF methods of identifying groups, the third 

method used here was k-means partitioning (MacQueen 1967). This was done using a 

special-purpose FORTRAN program (courtesy of Pierre Legendre, University of 

Montreal). This method begins with all samples together in a single large group. For a 

given number of groups (k), it divides the samples into k groups so as to minimize the 

sum of squared distances of the samples to their group centroid (defined as the 

average for the variables within that group). The question then becomes: what value of 

k is optimal for a given dataset? The optimal number of groups was selected using the 

Calinski-Harabasz criterion (Calinski and Harabasz 1974). This criterion is defined for a 

given number of groups (k) as: 

)}/()1{(
)}1/({

2

2

kNR
kRCH k −−

−
=  

where 2R  is the explained sum of squares, N is the total number of samples and k is 

the number of groups. For a given set of groups, the explained sum of squares will 

simply increase with increases in the number of groups. The CHk criterion is therefore 
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standardised (essentially like an F-statistic), in order to take this into account. An 

appropriate number of groups (k) is chosen where this criterion is maximised. K-means 

partitioning solutions and associated CHk values were calculated for each dataset (<63 

μm and <500 μm) on the basis of Euclidean distances of log metal concentrations for 

each of k = 2, 3, …, 12 groups. 

The relevance of the groups obtained using each of the above three procedures was 

ascertained by visual examination on the PCA plots and also by calculating the value of 

each of two statistics designed to measure the degree of separation among groups: the 

ANOSIM R-statistic (Clarke 1993) and the PERMANOVA F-statistic (Anderson 2001). 

The R-statistic is a standardised test-statistic which varies from −1 to +1 and measures 

the difference in the average rank within-group similarities from the average rank 

between-group similarities. The larger the value (i.e., the closer the value is to +1) the 

more distinct are the groups. The pseudo F-statistic also provides a useful measure of 

group differences. When Euclidean distances are used, as for the metal data here, it is 

effectively the sum of the between-group sum of squares divided by the sum of the 

within-group sum of squares, each divided by appropriate degrees of freedom. Notably, 

in this case the PERMANOVA F-statistic is the same as the Calinski-Harabasz criterion 

described above. Although not scaled (its distribution does depend on the degrees of 

freedom), larger values of F indicate greater separation of groups. The primary 

difference between these two test-statistics is that the ANOSIM R-statistic is based on 

ranks of similarities (or distances), whereas the PERMANOVA F-statistic is based on the 

actual distances themselves.  

5.3 Predicting the pollution gradient on the basis of biotic assemblages 

Having identified a pollution gradient on the basis of log metal concentrations in either 

the <63 μm fraction (PC1.63) or the total sample (< 500 μm, PC1.500, see results), the 

next step was to determine if there was a significant relationship between the biotic 

assemblages and these gradients. In essence, we wished to know whether positions 

along the pollution gradient axes (either PC1.63 or PC1.500) could be obtained using 

the biotic data alone. This was done using canonical analysis of principal coordinates 

(CAP, Anderson and Robinson 2003, Anderson and Willis 2003). In general, traditional 

canonical analysis can be used to find a linear combination of variables that have 

maximum correlation with either (i) one or more continuous variables (gradient analysis) 

or (ii) a set of groups (discriminant analysis). More particularly, if we consider the biotic 

data as a multivariate cloud of sample points (where abundances of each taxon 

correspond to a separate dimension), can we find an axis through this cloud that (i) is 

most highly correlated with the pollution gradient or (ii) is best at separating rank 

pollution groupings? Such axes are called canonical axes. 

We do not expect that the abundances of individual species or taxa (biotic variables) will 

necessarily have a direct linear relationship with log metal concentrations or with PCA-

derived pollution axes. However, it is possible that log abundances of taxa could be 



 16 

linearly related to such environmental gradients (e.g., Warton 2005). It is also possible 

that the relationship may be approximately linear through the use of an appropriate 

ecological dissimilarity measure. The CAP technique can be done on the basis of any 

dissimilarity measure of choice, as principal coordinate (PCO) axes (Gower 1966) are 

used instead of the original variables for the analysis. If CAP is done on the basis of 

Euclidean distance, then it is the same as a traditional canonical correlation analysis, 

seeking linear relationships between the two sets of variables (e.g., Legendre and 

Legendre 1998). However, if some other dissimilarity measure is used, then the 

distances among points in the multivariate cloud being examined is defined by the 

dissimilarity measure chosen. This means the relationship between the original taxa 

variables and the canonical axes will not be linear, but will generally be some complex 

unknown relationship that incorporates composition and abundance information, 

depending on how the dissimilarity measure is defined. 

Canonical axes may not travel through the multivariate cloud in the same direction as 

the direction of greatest total variation, so some measure of their success at identifying 

and predicting real and repeatable patterns in the data is required, using validation 

techniques. One approach is to take out one sample at a time and apply the canonical 

model from all of the other samples to the “left-out” sample in order to place it into the 

canonical space and allocate it to a particular group or gradient position (e.g., 

Lachenbruch and Mickey 1968). The proportion of samples that were correctly allocated 

is called the leave-one-out allocation success. This can be compared with what would 

be expected from random allocation to assess the utility of the model. For example, 

with 2 groups, we would expect random allocation to provide an allocation success rate 

of ~50%. Similar measures of allocation success can be used to measure the utility of 

the model with new, or “validation” sites (see section 3.6 below). If the model being 

developed does not involve groups, but rather concerns a gradient, then the leave-one-
out residual sum of squares performs a similar function, which we aim to minimize. 

CAP was done to relate the biotic assemblages: (i) to each of the PC pollution gradient 

axes from the log metal concentration data (<63 μm and <500 μm) and (ii) to the 5 rank 

pollution groupings identified from k-means partitioning of the log metal concentration 

data (see results). The flexibility of the CAP approach allows a plethora of different 

possible approaches for modeling, depending on the dissimilarity measure used. Each 

approach will emphasize different aspects of the biotic community information 

available. With this in mind, four different dissimilarity measures were chosen and used 

as the basis of analyses: 

 Bray-Curtis dissimilarity on square-root transformed data. This approach is generally 

highly recommended for the analysis of species abundance data in ecology (Clarke 

and Gorley 2006). It emphasizes both composition and relative abundance 

information, ignores joint absences and the modest transformation to square roots 

reduces the relative influence of highly abundant taxa. 



 17 

 Jaccard dissimilarity on presence/absence data. This dissimilarity measure is 

interpretable as the percentage of unshared species (e.g., Chao et al. 2005) and thus 

addresses compositional information only. 

 Euclidean distance on ln(x+1)-transformed abundances. A limitation of the Bray-

Curtis measure is its lack of discrimination at its upper limit and its sporadic 

behaviour with sparse data (Clarke et al. 2006). The Euclidean distance does not 

have an upper limit and also does not ignore joint-absence information, thus 

allowing samples having few species to cluster together. This may be appropriate in 

the present study, where high levels of contaminants could generate sparse sample 

units. The log-transformation allows for the well-known fact that most species 

abundances have right-skewed distributions (e.g. Warton 2005). 

 Modified Gower dissimilarity. This measure was only recently described (Anderson 

et al. 2006) and is directly interpretable as the average order-of-magnitude change in 

abundance on a log scale per taxon. It excludes joint absences but has no upper 

limit and, unlike Bray-Curtis, it therefore does not lose discrimination with 

decreasing overlap of shared species. In addition, a unit-change in composition 

(from 0-1) is treated with the same weight as an order-of-magnitude change in 

abundance. In the present study, a log to the base 10 was used to define an “order-

of-magnitude”.   

In each case, the number of PCO axes used for the CAP analyses (m) was chosen so as 

to maximize the leave-one-out allocation success (in the case of discriminant analyses) 

or so as to minimize the leave-one-out residual sum of squares (in the case of gradient 

analyses). 

5.4 Subsets of taxa that can be used for prediction 

It was of interest to determine which species might be driving any relationship that 

might be found between the biotic assemblages and the pollution gradients (PC1.500 

and PC1.63). There were two reasons for addressing this issue: (i) it is of biological 

interest to consider which taxa may be most sensitive to pollution gradients and (ii) a 

more efficient predictive model may be used for monitoring and management if a 

smaller number of taxa can serve as indicators of the pollution gradient. 

The first approach was to consider a subset of taxa that was nominated by J. Hewitt 

(NIWA) a priori as being sensitive to pollution on the basis of known biological qualities 

regarding field distributions (in the Auckland Region) and laboratory toxicity studies. This 

consisted of 22 taxa, which are hereafter referred to as the sensitivity subset (more 

details are provided in the results). An ecological subset of 43 taxa (listed in Appendix 

5), as had been nominated and used in the previous study by Anderson et al. (2002) and 

Hewitt et al. (2005), was also considered. 

The next approach was simply to examine scatterplots of individual taxa versus each of 

PC1.500 and PC1.63 across the sites and to choose those taxa which appeared to be 
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responding in some fashion (either positively or negatively) on the basis of this visual 

inspection. Although this may be thought of as a kind of “data snooping” (and it is!), we 

are not in the business of trying to then “test the significance” of any resulting 

relationship that might be obtained on the basis of such a subset (an illogical 

procedure). Rather, the subset, once obtained was examined for its ability to predict the 

positions of sites along the gradient, which is an entirely different issue. 

A third approach was to use the BVSTEP routine provided in PRIMER. This routine 

seeks to find subsets of variables which will produce a dissimilarity matrix having the 

strongest rank correlation (Spearman’s rho, ρ) with a fixed distance matrix representing 

some particular model of interest. In our case, the model of interest is Euclidean 

distances among samples based on either PC1.500 or PC1.63. The BVSTEP routine 

begins by randomly selecting a set of, say, 6 variables. It then gradually adds and/or 

drops variables in a step-wise fashion so as to maximize the correlation between the 

dissimilarity matrix obtained from those variables and the Euclidean distance matrix 

from the pollution gradient. Although it would be ideal to search over all possible 

combinations of variables, this is prohibitively time consuming for anything beyond 

about 17 variables, so it was out of the question to attempt it for 102 taxa. However, 

BVSTEP may find solutions that are only local maxima, as opposed to a global 

maximum value for ρ. Thus, in each case, we ran BVSTEP on the basis of 6 initial 

random variables and 20 random starts to increase the chances of finding true global 

maximum values. The BVSTEP routine was run on the basis of three dissimilarity 

measures: (i) Bray-Curtis, after square-root transformation, (ii) Euclidean distance after 

ln(x+1) transformation and (iii) Modified Gower (log base 10) and was run separately for 

PC1.63 and PC1.500. 

Finally, another potential optimal subset for modeling was obtained by performing a 

step-wise selection of ln(x+1)-transformed taxa in a linear model to predict Euclidean 

distances among points along the pollution gradient, using DISTLM (McArdle and 

Anderson 2001). This was deemed reasonable on the basis that the CAP analyses using 

Euclidean distance on ln(x+1)-transformed abundances performed as well or better than 

any other approach (see results). The selection criterion used at each step was the 

Bayesian Information Criterion (BIC), proposed by Schwarz (1978). This measure 

balances the value of the log-likelihood with a penalty for the number of parameters 

used in the model (e.g., Seber and Lee 2003). We used this criterion, rather than 

Akaike’s “An Information Criterion” (AIC, Akaike 1973), because the AIC is known to 

have a tendency to overfit (e.g., Seber and Lee 2003). Smaller BIC values indicate a 

better model fit. This criterion is defined in the present case as: 

 BIC = N × ln(SSRES / N) + (ln(N) × p) 

where N is the total number of samples, p is the number of parameters or variables 

used in the linear model and SSRES is the residual sum of squares. Step-wise selection 

proceeds iteratively by first a forward selection and then an attempted backwards 

elimination of variables so as to enhance (reduce) the value of the BIC criterion. The 

procedure stops when no additions or deletions of variables will decrease the BIC. This 
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analysis was done using a beta version of the PERMANOVA+ add-on package to the 

PRIMER computer program (to be released in 2007). 

After all of the proposed subsets had been determined, their performance was 

compared by calculating: (i) the value of the Spearman rank correlation (ρ) between the 

dissimilarity matrix obtained using the subset of taxa and the Euclidean distance matrix 

of each pollution gradient (calculated using the routine called RELATE in the PRIMER 

program); and (ii) a sequential DISTLM, regressing each of the pollution gradients 

versus each of the subsets, including determination of the percentage of the variation 

explained (Note: the latter was only done for those subsets which were derived using a 

Euclidean distance approach). 

Where the relationship using a particular subset was deemed to be substantial enough 

(i.e., rivaling the results obtained on the basis of all taxa), a CAP analysis was done, 

including relevant diagnostics, to predict the pollution gradient on the basis of the 

subset. 

5.5 Refinements using grain-size characteristics and exposure indices 

Results indicated that the sites identified as most polluted were generally located in the 

upper reaches of estuaries in some of the least exposed locations (see results). In 

addition, the sensitivities of organisms characterising sites that have different sediment 

textures and exposures may vary considerably. The model developed by direct 

measures of metal concentrations along a gradient should not be entirely confounded 

by a concomitant gradient in sediment texture and/or exposure. The available 

information regarding physical sediment characteristics and exposure at the sites 

should be used to inform and enhance models as much as possible. 

We considered two possible ways to incorporate sediment texture and exposure 

variables into the modeling process. The first was to treat the physical characteristics as 

covariates. That is, essentially to “remove” the known relationships (statistically) 

between the biota and the physical variables before investigating the relationship 

between the biota and the pollutants on the information that remains (residuals). The 

second was to seek a partitioning of the dataset into groups on the basis of the physical 

variables and to then examine relationships between the biota and the pollutants 

separately within each of those groups. 

First, diagnostics of the physical variables (the 4 grain-size variables and the 2 exposure 

variables) were done and an optimal transformation to normality for each was sought 

using the Box-Cox transformation, as had been done for the metal concentration 

variables (Box and Cox 1964, see section 3.1 above for more details). The correlations 

among all of the physical variables and PC1.500 and PC1.63 were also examined in 

detail. Not surprisingly, a strong correlation was revealed between the percentage of 

silt and clay (the mud fraction, < 63 μm) and PC1.500 (r = 0.73). This meant that the 

proposed approach of “removing” the relationship between the biota and sediment 
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texture would also effectively remove most of the information inherent in the metal 

concentration data itself, tantamount to “throwing the baby out with the bathwater”, so 

to speak. Furthermore, there is no currently known statistical method that can achieve a 

“removal” of effects of physical variables when biotic variables are treated as 

predictors in an indirect non-linear fashion through a chosen dissimilarity measure, as in 

the present case1. Thus, the approach of partitioning the dataset into groups based on 

the physical variables was chosen as a more appropriate route, especially in keeping 

with the ultimate goal of being able to make successful predictions for new sites in 

these systems. 

A principal component analysis was done to visualise the relationships among sites in 

terms of the six optimally transformed physical variables. Data were first normalized (by 

subtracting the mean and dividing by the standard deviation) because, unlike the metal 

concentration variables, these variables did not have comparable scales of variation. A 

search for appropriate groupings of sites was done using three techniques, as had been 

done for the metal concentration data: (i) hierarchical agglomerative group-average 

clustering and the use of SIMPROF; (ii) an arbitrary slice through the resulting 

dendrogram and (iii) k-means partitioning, using the Calinski-Harabasz criterion to 

identify an appropriate number of groups. The resulting groupings were then 

superimposed on the PCA plot and were also subjected to analysis by ANOSIM and 

PERMANOVA to determine the most parsimonious grouping of sites on the basis of the 

physical variables. 

Two groups of sites were identified using the above procedure (see the results for 

more details). For each of these two groups (one corresponded to sites with generally 

finer sediments and one with generally coarser sediments), the relationship between 

the biota and each of PC1.500 and PC1.63 was investigated using CAP on the basis of 

each of the following measures: (i) Bray-Curtis dissimilarities on square-root 

transformed abundances, (ii) Euclidean distances on ln(x+1)-transformed abundances 

and (iii) Modified Gower dissimilarities with log base 10. In each case, the canonical 

correlation and leave-one-out residual sum of squares were investigated to identify the 

best of these models. Furthermore, the BVSTEP and DISTLM procedures were used, 

as previously described, to identify subsets of species that could be driving observed 

relationships. Subsequent CAP analyses were also done on these subsets and results 

compared. 

5.6 3.6 Validation 

The biological, chemical and physical data were set aside for 14 samples from the 

modeling process so that these could be used for model validation (see Fig. 1, 

Appendix 1). We wished to determine how closely the best models were able to place 

                                                           
1 dbRDA can be used to achieve such a removal, however, when biotic variables based on a dissimilarity measure 
are treated as the responses rather than as the predictors. 
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each new validation sample onto an existing canonical axis and, from this, to predict the 

true position of that sample along the relevant pollution axis. 

First, the chemical data were used to place each sample point onto each of the 

pollution axes (PC1.500 and also PC1.63, as obtained using PCA, see results) using the 

actual metal concentrations measured at each site. These positions were deemed to be 

the true or “actual” values for those sites along each pollution axis. Models which 

showed strong canonical correlations as well as small leave-one-out residual sums of 

squares were then each used, in turn, to place each validation point onto the pollution 

axes. For each model, these were the “predicted” values along the pollution gradient. 

The sum of squared deviations of the predicted values from the actual values (the 

residual sum of squares, SSRES) was then calculated for each model. The models with 

the smallest values for SSRES were considered to have achieved the best predicted fit. 

Scatter plots of the predicted versus the actual values were also used to identify the 

sites whose predicted values deviated the most from their actual values and in which 

direction. 

Models which had been refined by including physical data required allocation of the 

validation sites to one of the two physical groupings that had been identified (see 

results for details). This was done visually by superimposing the validation sites onto 

the principal component plot based on the physical data. Identical results were obtained 

using a canonical analysis approach to the allocation (results not shown). After allocating 

validation sites to a physical grouping, separate canonical analyses were done 

accordingly and SSRES was calculated, as for the other models. 
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6 RESULTS 

6.1 Identification of a pollution gradient using PCA 

The first principal component explained approximately 94% of the variation in log metal 

concentrations for the <500 μm dataset and just over 95% of the variation in log metal 

concentrations for the <63 μm dataset (Fig. 3). The value of a particular site at a 

particular time along the first PC axis, in each case, therefore provides an excellent 

measure of the degree of pollution (amount of metals) in the sediment at that site and 

time. We shall refer to the first principal component for these two datasets as PC1.500 

and PC1.63 in what follows. The sign of a principal component axis is arbitrary, so the 

axis was deliberately orientated such that increasing values along PC1, in each case, 

would correspond to increasing metal concentrations, for convenience in interpretation 

(Fig. 3). 

For a principal component analysis, the eigenvector weights provide coefficients for a 

linear combination of the (centered) original variables that will yield the principal 

component scores. For the PC axes shown in Fig. 3, we obtained: 

PC1.500 = )(586.0)(528.0)(615.0 )500()500()500(
PbZnCu XXX ×+×+×  

PC1.63 = )(663.0)(534.0)(524.0 )63()63()63(
PbZnCu XXX ×+×+×  

where, for example, )500(
CuX  = the log concentration of copper in the total sample (<500 

μm) minus the mean log concentration of copper (<500 μm) across the full set of 81 

samples, and so on for the other variables. The means that should be used to obtain 

centered values for each of the variables are shown in Table 1. 

Table 1. Mean log concentrations for each metal in each dataset for the 81 samples used for modeling. 

Metal Mean (<500 μm) Mean (<63 μm) 

Cu 2.472 2.876 

Zn 4.418 4.643 

Pb 2.925 3.327 
 

Thus, for example, for a given validation site, if the metal concentration values from the 

<500 μm fraction are given as { Cux , Znx , Pbx } for copper, zinc and lead, respectively, 

then the value for that site along the pollution gradient axis would be: 

 PC1.500 = )418.4)(ln(528.0)472.2)(ln(615.0 −×+−× ZnCu xx  

 )925.2)(ln(586.0 −×+ Pbx  
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The ordered values of particular samples (sites within a particular year) along pollution 

gradient axis PC1.500 are shown in Table 2. Similar information for PC1.63 is shown in 

Table 3. 
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Fig. 3. PCA of log metal concentrations (Cu, Pb and Zn) for the whole sample (< 500 μm, top) and
for the mud fraction (<63 μm, bottom) at each of 81 sites. Numbers indicate the 5 groups (1 = healthy,

5 = polluted) obtained using k-means partitioning on the basis of Euclidean distances.
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Table 2. List of the samples used for modeling, ordered on the basis of increasing values along the pollution 
gradient represented by principal component axis 1 from the whole sediment sample (PC1.500). Also given is the 

group identification of each sample based on the 5-group k-means partitioning. 

Year Site no. Site name PC1.500 Group 
2006 47 Okura D -2.7806 1 
2002 9 Clarkes Beach -2.7159 1 
2004 50 Orewa G -2.6402 1 
2002 7 Cape Horn -2.4859 1 
2005 23 Hobsonville -2.3006 1 
2004 62 Puhoi F -2.2836 1 
2004 49 Orewa F -2.1429 1 
2004 31 Mangemangeroa B -2.0854 1 
2004 75 Waiwera J -2.0476 1 
2005 12 Glendowie -2.0120 1 
2004 74 Waiwera E -1.9847 1 
2004 38 Meola Outer -1.8100 2 
2002 23 Hobsonville -1.7070 2 
2005 27 Lower Shoal Bay -1.6113 2 
2004 70 Turanga G -1.5901 2 
2004 63 Puhoi H -1.5711 1 
2002 61 Puhinui, Entrance -1.4129 2 
2004 69 Shoal Bay, Upper -1.2919 2 
2004 73 Victoria Ave -1.2734 2 
2004 8 Chelsea -1.1211 2 
2005 22 Hobson - Tohunga -1.0933 2 
2004 10 Coxes, Waitemata -0.9955 2 
2005 52 Out Main UWH -0.8843 2 
2005 76 Weiti -0.7310 3 
2005 60 Puhinui -0.7136 3 
2005 43 Motions East -0.5960 3 
2004 15 Henderson Entrance -0.4685 3 
2004 20 Hillsborough -0.4386 3 
2005 19 Hi North -0.3763 3 
2004 4 Bengazi -0.2657 3 
2005 64 Pukaki -0.2603 3 
2002 39 Meola Reef -0.2455 3 
2002 15 Henderson Entrance -0.1683 3 
2004 71 Turanga J -0.1141 3 
2005 58 Pollen Island -0.0399 3 
2005 77 Whakataka 0.0490 3 
2005 39 Meola Reef 0.2281 3 
2005 28 Lucus outer 0.2360 3 
2002 77 Whakataka 0.2371 3 
2005 14 Hellyers outer 0.3413 4 
2005 13 Hellyers 0.3992 4 
2005 72 Upper main UWH 0.4544 4 
2005 35 Mangere Inlet: Kiwi Esplanade 0.4583 4 
2004 3 Awatea Rd 0.4820 4 
2005 56 Paremoremo 0.5013 4 
2005 67 Rangitopuni UWH 0.5280 4 
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Year Site no. Site name PC1.500 Group 
2005 30 Lucus Upper 0.5386 4 
2004 79 Whau Entrance 0.5675 4 
2005 66 Rangitopuni 0.5742 4 
2005 57 Paremoremo upper 0.6224 4 
2005 6 Brigham 0.6372 4 
2004 29 Lucus Te Wharau 0.6478 4 
2005 40 Meola West 0.6540 4 
2005 34 Mangere Inlet: Harania Creek 0.6903 4 
2004 68 Shoal Bay, Hillcrest 0.7121 4 
2004 59 Princess St 0.7333 4 
2005 54 Pakuranga mid 0.9105 4 
2005 33 Mangere Cemetery 0.9670 4 
2005 45 Ngataringa Bay 0.9830 4 
2002 41 Middlemore 1.0451 4 
2004 16 Henderson Lower 1.0492 4 
2004 55 Panmure 1.0547 4 
2005 24 Kaipatiki 1.0610 4 
2004 65 Purewa 1.0888 4 
2004 51 Otahuhu Creek 1.1593 4 
2005 1 Anns Creek 1.1863 4 
2004 5 Bowden Rd 1.2195 5 
2005 41 Middlemore 1.2207 5 
2002 17 Henderson Upper 1.3310 5 
2002 1 Anns Creek 1.4536 5 
2005 78 Whau East 1.5129 5 
2005 37 Meola Inner 1.5486 5 
2005 46 Oakley 1.5911 5 
2004 82 Whau Upper 1.6878 5 
2002 42 Motions 1.7307 5 
2005 84 Whau West 1.8031 5 
2002 37 Meola Inner 1.9672 5 
2005 82 Whau Upper 2.0153 5 
2005 83 Whau Wairau 2.0243 5 
2002 83 Whau Wairau 2.1583 5 
2005 42 Motions 2.1976 5 
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Table 3. List of the samples used for modeling, ordered on the basis of increasing values along the pollution 
gradient represented by principal component axis 1 from the < 63 micron fraction (PC1.63). Also given is the group 

identification of each sample based on the 5-group k-means partitioning. 

Year Site no. Site name PC1.63 Group 
2002 7 Cape Horn -3.0239 1 
2005 60 Puhinui -2.7719 1 
2004 50 Orewa G -2.2785 1 
2004 49 Orewa F -2.1674 1 
2002 9 Clarkes Beach -2.0425 1 
2004 62 Puhoi F -1.9768 1 
2004 63 Puhoi H -1.8811 1 
2002 61 Puhinui, Entrance -1.7555 1 
2004 75 Waiwera J -1.6992 1 
2004 74 Waiwera E -1.5414 1 
2004 47 Okura D -1.3977 2 
2005 64 Pukaki -1.3297 2 
2004 31 Mangemangeroa B -1.1439 2 
2004 70 Turanga G -0.9028 2 
2005 76 Weiti -0.8860 2 
2004 71 Turanga J -0.7945 2 
2005 35 Mangere Inlet: Kiwi Esplanade -0.7189 2 
2004 8 Chelsea -0.5538 2 
2004 20 Hillsborough -0.5121 2 
2005 34 Mangere Inlet: Harania Creek -0.3598 3 
2005 66 Rangitopuni -0.3386 3 
2005 58 Pollen Island -0.2881 3 
2005 27 Lower Shoal Bay -0.2753 3 
2005 56 Paremoremo -0.2276 3 
2002 23 Hobsonville -0.2209 3 
2004 73 Victoria Ave -0.1703 3 
2005 23 Hobsonville -0.1263 3 
2005 14 Hellyers outer -0.1236 3 
2005 12 Glendowie -0.1168 3 
2005 72 Upper main UWH -0.0915 3 
2005 67 Rangitopuni UWH -0.0868 3 
2004 79 Whau Entrance -0.0379 3 
2004 29 Lucus Te Wharau -0.0267 3 
2005 77 Whakataka -0.0127 3 
2005 33 Mangere Cemetery 0.0131 3 
2005 52 Out Main UWH 0.0195 3 
2004 68 Shoal Bay, Hillcrest 0.0311 3 
2004 4 Bengazi 0.0399 3 
2005 6 Brigham 0.0586 3 
2004 69 Shoal Bay, Upper 0.0725 3 
2005 45 Ngataringa Bay 0.0918 3 
2002 77 Whakataka 0.0923 3 
2005 22 Hobson - Tohunga 0.1102 3 
2002 15 Henderson Entrance 0.1229 3 
2004 15 Henderson Entrance 0.1402 3 
2005 57 Paremoremo upper 0.1446 3 
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Year Site no. Site name PC1.63 Group 
2005 19 Hi North 0.2332 3 
2004 65 Purewa 0.2411 4 
2005 30 Lucus Upper 0.2683 4 
2004 3 Awatea Rd 0.2867 4 
2004 38 Meola Outer 0.2876 4 
2004 16 Henderson Lower 0.3385 4 
2005 24 Kaipatiki 0.3413 4 
2005 43 Motions East 0.3585 4 
2005 28 Lucus outer 0.3634 4 
2005 39 Meola Reef 0.3833 4 
2004 55 Panmure 0.4707 4 
2002 1 Anns Creek 0.4707 4 
2005 40 Meola West 0.4928 4 
2004 51 Otahuhu Creek 0.5485 4 
2005 13 Hellyers 0.6032 4 
2004 5 Bowden Rd 0.6632 4 
2002 17 Henderson Upper 0.6727 4 
2005 84 Whau West 0.6908 4 
2004 59 Princess St 0.7328 4 
2002 39 Meola Reef 0.7631 4 
2005 54 Pakuranga mid 0.8334 4 
2004 10 Coxes, Waitemata 0.9336 4 
2005 78 Whau East 1.0663 5 
2005 46 Oakley 1.0892 5 
2002 41 Middlemore 1.1132 5 
2005 41 Middlemore 1.2050 5 
2002 37 Meola Inner 1.2704 5 
2005 1 Anns Creek 1.3117 5 
2002 42 Motions 1.7486 5 
2002 83 Whau Wairau 1.7893 5 
2005 82 Whau Upper 1.8205 5 
2005 37 Meola Inner 1.8318 5 
2005 83 Whau Wairau 1.8355 5 
2005 42 Motions 1.8410 5 
2004 82 Whau Upper 2.0438 5 
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6.2 Groupings identified using clustering and k-means partitioning 

Hierarchical agglomerative group-average cluster analysis on log metal concentrations 

from the whole sample (<500 μm) revealed some fairly clear groupings in the 

dendrogram (Fig. 4). An arbitrary slice at a Euclidean distance value of 1.05 yielded 5 

groups. SIMPROF analysis indicated that there were 6 distinct groups (identified by the 

finest stems in the dendogram that remain in black, as opposed to those in red, Fig. 4). 

Analysis by k-means partitioning indicated that the most appropriate grouping structure 

was achieved by the partitioning solution found for k = 5 groups, which obtained the 

highest value of CHk = 191.77 (Table 4). 

The results obtained using metal concentrations for the <63 micron fraction also 

suggested some fairly clear groupings (Fig. 5). An arbitrary slice at a Euclidean distance 

value of 0.90 yielded 5 groups, although the number of samples per group was less 

evenly distributed than was seen for the whole sample analysis. The analysis using 

SIMPROF, however, suggested that there were 12 distinct groups (Fig. 5). The reason 

for this large number of groups could be due to the high correlation structure among 

the variables, which SIMPROF uses to characterize the presence of any structure worth 

distinguishing with further splits when assessing a given sub-set of samples. Although 

the best k-means solution in this case was found for k = 3 groups (CHk = 164.72), 

comparable results were obtained for the 5-group partitioning solution (CHk = 163.69, 

Table 4). 

 

Table 4. Values of the Calinski-Harabasz criterion (CHk) for the k-means partitioningsolutions from k = 2-12 
groups for each of the log metal concentration datasets. 

No. groups 

(k) 

<500 μm 

CHk 

<63 μm 

CHk 

2 184.34 120.02 

3 176.33 164.72 

4 189.20 157.76 

5 191.77 163.69 

6 169.52 160.88 

7 142.94 162.41 

8 164.25 146.80 

9 150.09 156.32 

10 137.21 125.13 

11 124.22 112.00 

12 114.66 97.03 

 

The 3 different grouping solutions for each of the datasets were subjected to further 

analysis using the ANOSIM and PERMANOVA test-statistics (see Table 5). In the case 
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of the <500 μm dataset, the k-means 5-group solution obtained the highest value for 

both the ANOSIM and PERMANOVA test statistics. In addition, apart from just one of 

the samples (site 63, Puhoi H, 2004, see Table 2), the samples belonging to these five 

groups were ordered without any overlap along PC1.500 (Fig. 3). The results were a 

little less clear for the < 63 μm dataset: the grouping solution obtained using the “slice” 

method achieved the highest value of the R-statistic, whereas the k-means solution 

achieved the highest value of the PERMANOVA F-statistic (Table 5). However, the k-

means 5-group solution also resulted in an ordering of samples without any overlap 

along PC1.63 (Table 3, Fig. 3). Thus, the 5-group k-means solution (with samples ranked 

from 1-5, with 1 = healthy and 5 = polluted) were used for subsequent analyses and 

plots, as shown in Tables 2 and 3 and in Fig. 3 for each of the datasets. 

 

Table 5. Values of the ANOSIM R-statistic and the PERMANOVA F-statistic for each of the log metal concentration 
datasets and each of the grouping solutions. 

  <500 μm   <63 μm  

 k ANOSIM R 

PERMANOVA 

F k ANOSIM R PERMANOVA F 

k-means 5 0.910 191.77 5 0.859 163.69 

Slice 5 0.907 175.64 5 0.913 139.54 

SIMPROF 6 0.884 173.36 12 0.890 123.86 
  

Maps which show each site colour-coded according to its pollution grouping according 

to the most recent sampling (from 1 = healthy to 5 = polluted) as indicated in Tables 2 

and 3 are provided in Figures 6 and 7 for PC1.500 and PC1.63, respectively. 

Having identified appropriate cluster groupings along the pollution gradient, we can 

therefore define classification boundaries along each PC gradient as being half-way 

between the highest value obtained along the axis for one group and the lowest value 

obtained along the axis for the next group. These proposed boundaries for classification 

are identified for each of the pollution gradient PC axes in Table 6. If a site obtains a 

value very far outside the overall minimum or maximum values (e.g., -3.5 or 3.0), then it 

would be considered outside the bounds of the current models for assessment 

purposes. 

 

Table 6. Boundaries for classification along each of the pollution gradient PC axes. 

  PC1.500   PC1.63  

 Group min max  min max 

healthy 1 -2.781 -1.897  -3.024 -1.470 

 2 -1.897 -0.808  -1.470 -0.436 

 3 -0.808 0.289  -0.436 0.237 

 4 0.289 1.203  0.237 1.000 

polluted 5 1.203 2.198  1.000 2.044 
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Log metal concentrations, <500 microns, Euclidean distance

Fig. 4. Hierarchical agglomerative group-average cluster analysis among samples on the basis of log metal concentrations in the whole sample
(< 500 microns) using Euclidean distances. The splits in red were not statistically significant, by SIMPROF, which indicated 6

groups. The single horizontal line indicates an arbitrary slice at a distance value of 1.05 which yielded 5 groups. Labels indicate
the year and site number (as per Appendix 1) for each sampling unit.
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Log metal concentrations, <63 microns, Euclidean distance

Fig. 5. Hierarchical agglomerative group-average cluster analysis among samples on the basis of log metal concentrations in the <63 micron fraction
using Euclidean distances. The splits in red were not statistically significant, by SIMPROF, which indicated 12 groups of samples. The

single horizontal line indicates an arbitrary slice at a distance value of 0.9 which yielded 5 groups. Labels indicate
the year and site number (as per Appendix 1) for each sampling unit.
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Fig. 6. Map of the Auckland region showing pollution groupings on the basis of k-means partitioning 
(1 = healthy, 5 = polluted) of the first principal component of log metal concentrations

(Cu, Pb and Zn) for the whole sample (< 500 μm) at each of 81 sites.
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Fig. 7. Map of the Auckland region showing pollution groupings on the basis of k-means partitioning 
(1 = healthy, 5 = polluted) of the first principal component of log metal concentrations

(Cu, Pb and Zn) for the mud fraction (< 63 μm) at each of 81 sites.
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6.3 Predicting the pollution gradient on the basis of biotic assemblages 

A summary of the CAP analyses designed to discriminate among the 5 groups for each 

of the <63 μm and <500 μm log metal concentration groupings and on the basis of 

each of the dissimilarity measures is shown in Table 7. 

 

Table 7. Summary of CAP analyses to discriminate among the 5 rank pollution groupings (identified using k-means 
on log metal concentrations) using 102 taxa on the basis of each of four different dissimilarity measures, as 

indicated. Results are given separately for the metal concentrations from the mud fraction (<63 μm) and from the 
total sample (<500 μm). m = the number of PCO axes used for the analysis, prop.G = the proportion of the total 
variation in the dissimilarity matrix explained by the first m PCO axes, SSRES = the leave-one-out residual sum of 

squares, δi is the squared canonical correlation for the ith canonical axis and %correct = the leave-one-out 
allocation success of each model. 

< 63 μm 

 m prop.G SSRES δ1 δ2 δ3 δ4 %correct 

BC, sqrt 11 0.836 3.481 0.633 0.437 0.268 0.076 54.32 

Jaccard 12 0.762 3.599 0.519 0.467 0.236 0.070 51.85 

Euc, ln(x+1) 10 0.826 3.723 0.614 0.318 0.160 0.082 46.91 

Mod. Gower 27 0.931 3.707 0.745 0.670 0.394 0.320 56.79 

 

< 500 μm 

 m prop.G SSRES δ1 δ2 δ3 δ4 %correct 

BC, sqrt 12 0.858 3.332 0.764 0.400 0.214 0.119 56.79 

Jaccard 12 0.762 3.333 0.749 0.408 0.188 0.095 56.79 

Euc, ln(x+1) 19 0.943 3.664 0.794 0.542 0.277 0.166 54.32 

Mod. Gower 25 0.914 3.443 0.821 0.510 0.387 0.295 59.26 

 

Unfortunately, none of these analyses were very convincing, as all had allocation 

success rates of < 60%, regardless of the dissimilarity measure used (Table 7). 

Although the percentages of correct allocation were considerably better than random 

allocation (which we would expect to achieve ~20% success for 5 groups), these 

models of the rank pollution groupings alone did not yield a very useful tool for 

predicting ecosystem health. 

In contrast, canonical analyses which related the biota to the PC pollution gradient axes 

directly were much more successful (Table 8). The relationships between each of the 

PC pollution axes and the biotic data measured using any of the four chosen 

dissimilarity measures were all approximately linear, so it was not necessary to 

consider the more complex approach of using some form of nonlinear canonical 

analysis (e.g., NCAP Millar et al. 2005). Overall, it was clear that there was a stronger 

relationship between the faunal data and the pollution gradient based on the analysis of 
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metals from the whole sample (i.e. <500 μm) than there was between the faunal data 

and the pollution gradient based on metals obtained from the mud fraction alone (< 63 

μm). In both cases, the relationship between the fauna and the PC axes was strongest 

using either Euclidean distances on ln(x+1)-transformed abundances or the Modified 

Gower measure (Table 8). However, the Modified Gower approach did require a large 

number of PCO axes to obtain such a good relationship. As predicted by general 

ecological theory, all of the dissimilarity measures that used relative abundance 

information performed better than the Jaccard measure (based on presence/absence) 

for these models. 

 

Table 8. Summary of CAP analyses to model pollution gradients (obtained from PCA on log metal concentrations) 
using faunal data (102 taxa) on the basis of each of four different dissimilarity measures, as indicated. Results are 
given separately for the metal concentrations from the mud fraction (< 63 μm) and from the total sample (< 500 

μm). m = the number of PCO axes used for the analysis, prop.G = the proportion of the total variation in the 
dissimilarity matrix explained by the first m PCO axes, SSRES = the leave-one-out residual sum of squares, δ1 is 
the squared canonical correlation for the canonical axis, correl = the correlation between the canonical axis and 

the pollution gradient. 
 
 < 63 μm 

 m prop.G SSRES δ1 correl 

BC, sqrt 12 0.858 0.536 0.619 0.787 

Jaccard 9 0.668 0.698 0.455 0.675 

Euc, ln(x+1) 17 0.927 0.525 0.687 0.829 

Mod. Gower 23 0.895 0.532 0.708 0.841 

 

 < 500 μm 

 m prop.G SSRES δ1 correl 

BC, sqrt 14 0.898 0.326 0.759 0.871 

Jaccard 10 0.704 0.363 0.711 0.843 

Euc, ln(x+1) 16 0.918 0.342 0.784 0.885 

Mod. Gower 22 0.885 0.320 0.806 0.898 
 

The best of these models were obtained on the basis of the Modified Gower measure, 

yielding canonical correlations of r = 0.841 and r = 0.898 for PC1.63 and PC1.500, 

respectively (Fig. 8). The canonical relationships obtained on the basis of the other 

dissimilarity measures, which were highly comparable when relative abundance 

information was included, are shown in Figure 9. 
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Fig. 8. CAP analyses of pollution gradients for the whole sample (< 500 μm, top) and the mud fraction 
(< 63 μm, bottom) versus faunal data (103 taxa) on the basis of the Modified Gower dissimilarity measure.

Estimates of the intercept (a) and slope (b) of the predictive relationship as well as the correlation (r)
are shown in blue. Also in blue are dotted lines demarcating the 5 pollution groupings.  
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Fig. 9. CAP analyses of pollution gradients for the whole sample (< 500 μm, left) and the mud fraction 
(< 63 μm, right) versus faunal data (103 taxa) on the basis of each of three different dissimilarity measures.

Estimates of the intercept (a) and slope (b) of the predictive relationship as well as the correlation (r)
are shown in blue on each plot. Also in blue are dotted lines demarcating the 5 pollution groupings. 
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6.4 Predictive models using subsets of taxa 

Scatterplots of individual taxa versus each of the pollution gradients (PC1.500 and 

PC1.63) are shown in Appendices 6 and 7, respectively. Only those taxa which occurred 

in at least 5% of the sites (i.e. 4 sites or more) were investigated in detail using these 

plots. The choice of a subset of taxa by eye using scatterplots is clearly suboptimal, 

because it is not possible to tell from these the degree to which individual taxa might 

overlap in their information content for individual sites. In addition, such choices also 

clearly depend on the eye of the beholder. Nevertheless, subsets of taxa were chosen 

in this manner (identified by asterisks in Appendices 6 and 7 and referred to hereafter 

as scatter subsets) for each of the pollution gradients: 14 taxa for PC1.500 and 7 taxa 

for PC1.63. The ecological subset (43 taxa) is given in Appendix 5. The scatter subset, 

the sensitivity subset (22 taxa) and the subsets obtained using BVSTEP or step-wise 

multiple regression with the BIC criterion (via DISTLM) are given for PC1.500 in Table 9 

and for PC1.63 in Table 10. There was a reasonable amount of overlap in the particular 

subsets of taxa chosen to have the greatest relationship with each of the pollution 

gradient axes. 

Our next step was to compare these subsets in terms of the strength of their 

relationship with the pollution gradients. This was done not by CAP but by calculating 

Spearman’s rank correlation (rho = ρ) between dissimilarity matrices obtained using 

subsets of taxa (identified using BVSTEP and other methods) and the Euclidean 

distance matrix based on PC1.500. The values of ρ obtained using subsets were 

generally larger than that obtained using the whole set of 102 taxa (Table 11). The 

sensitivity, ecological and scatter subsets generally performed poorly. In contrast, the 

subsets obtained using BVSTEP achieved rank correlations well over 0.5 and the subset 

obtained using BVSTEP on Bray-Curtis for square-root transformed abundances 

achieved the best relationship with the PC1.500 pollution gradient, at ρ = 0.589 for a 

subset of 16 variables. 

For the pollution gradient obtained using weak acid digestion on the mud fraction 

(PC1.63), the sensitivity, ecological and scatter subsets all did more poorly (had a 

weaker ρ value) than did the analysis using all taxa (Table 11). Subsets obtained using 

BVSTEP were better and the best relationship of those trialed was obtained using 

BVSTEP on the basis of Euclidean distance of ln(x+1)-transformed abundances (12 

variables, ρ = 0.536). 

We are interested here to actually model the pollution gradients directly, if possible, 

using the biotic data. For those subsets that were obtained on the basis of Euclidean 

distance for ln(x+1)-transformed abundances, each pollution gradient could be modeled 

directly using multiple regression. A univariate multiple regression analysis can be 

obtained using DISTLM when there is only one variable of interest (such as PC1.500) 

and Euclidean distance is used. In each case, the best model (in terms of the BIC 

criterion) was (not surprisingly) obtained using the subset which had been chosen using 

step-wise selection and the BIC criterion in the first place (in DISTLM), followed by the 
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BVSTEP subset. It was very interesting to note that the step-wise multiple regression 

subset on the basis of ln(x+1)-transformed abundances using BIC explained nearly 78% 

of the variance in PC1.500 with only 7 taxa and nearly 76% of the variance in PC1.63 

with only 8 taxa (Table 12).
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Table 9. Subsets of taxa versus PC1.500 identified considering the biology of the organisms (sensitivity), by using BVSTEP on the basis of various dissimilarity measures (as indicated), 
using visual examination of individual scatter plots (scatter), or by using DISTLM with the BIC criterion in a step-wise multiple regression of ln(x+1)-transformed variables. Names in 

blue were obtained in 3 or more of the 6 subsets. 

Sensitivity BVSTEP, BC, sqrt BVSTEP, Euc, ln(x+1) BVSTEP, MG Scatter DISTLM, BIC 

Amphibola crenata Anthopleura aureoradiata Anthopleura aureoradiata Aglaophamus macroura Amphibola crenata Colurostylis spp. 

Amphipod other Cirolana sp. Bivalve unid. Anthopleura aureoradiata Anthopleura aureoradiata Helice, Hemi., Macrop. 

Aonides oxycephala Colurostylis spp. Colurostylis spp. Chiton Austrovenus stutchburyi Nereidae 

Aquilaspio aucklandica Edwardsia sp. Crassostrea gigas Colurostylis spp. Colurostylis spp. Orbinidae 

Aricidea sp. Haminoea zelandiae Glycera spp. Crassostrea gigas Cominella glandiformis Phoxocephalidae 

Arthritica bifurcata Isopod other Helice, Hemi., Macrop. Hiatula siliqua Glycera spp. Phyllodocid spp. 

Austrovenus stutchburyi Magelona sp. Macomona liliana Lumbrineridae Helice, Hemi., Macrop. Sipunculid 

Colurostylis spp. Minuspio sp. Macroclymenella stewart. Macroclymenella stewart. Macomona liliana  

Corophidae Nereidae Mactra ovata Magelona sp. Mactra ovata  

Cossura consimilis Orbinidae Nemertean  Musculista senhousia Nereidae  

Exogoninae Paphies australis Nereidae Notomastus sp. Notoacmea spp.  

Glycera spp. Scolelepis spp.  Orbinidae Orbinidae Notomastus sp.  

Helice, Hemi., Macrop. Spionidae  Paphies australis Scolelepis spp.  Phoxocephalidae  

Heteromastus filiformis Sipunculid Scolelepis spp.  Spionidae  Scolecolepides benhami  

Macomona liliana Trochodota dendyi Tanaidacea Tanaidacea   

Macroclymenella stewart. Zeacumantus lutulentis Waitangi brevirostris Waitangi brevirostris   

Mactra ovata  Zeacumantus lutulentis Zeacumantus lutulentis   

Nemertean       

Nucula hartvigiana      

Paracalliope novizealandiae      

Phoxocephalidae      

Polydorid complex      
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Table 10. Subsets of taxa versus PC1.63 identified considering the biology of the organisms (sensitivity), by using BVSTEP on the basis of various dissimilarity measures (as indicated), 
using visual examination of individual scatter plots (scatter), or by using DISTLM with the BIC criterion in a step-wise multiple regression of ln(x+1)-transformed variables. Names in 

blue were obtained in 3 or more of the 6 subsets. 

Sensitivity BVSTEP, BC, sqrt BVSTEP, Euc, ln(x+1) BVSTEP, MG Scatter DISTLM, BIC 

Amphibola crenata Aglaophamus macroura Aglaophamus macroura Aglaophamus macroura Amphibola crenata Aglaophamus macroura 

Amphipod other Aricidea sp. Crassostrea gigas Magelona sp. Glycera spp. Cirolana sp. 

Aonides oxycephala Barnacles Glycera spp. Owenia fusiformis Lepidonotinae Cirratulidae 

Aquilaspio aucklandica Cirolana sp. Hesionidae Spionidae  Mactra ovata Disconatus accolus 

Aricidea sp. Cominella glandiformis Mactra ovata Waitangi brevirostris Nereidae Glycera spp. 

Arthritica bifurcata Felaniella zelandica Magelona sp.  Phoxocephalidae Lepidonotinae 

Austrovenus stutchburyi Glycera spp. Musculista senhousia  Scolecolepides benhami Nereidae 

Colurostylis spp. Halicarcinus spp. Mysidacea   Phoxocephalidae 

Corophidae Magelona sp. Scolecolepides benhami    

Cossura consimilis Mantis shrimp Spionidae     

Exogoninae Mysidacea Sipunculid    

Glycera spp. Nereidae Waitangi brevirostris    

Helice, Hemi., Macrop. Orbinidae     

Heteromastus filiformis Paphies australis     

Macomona liliana Phoxocephalidae     

Macroclymenella stewart. Phyllodocid spp.     

Mactra ovata Polynoid     

Nemertean  Spionidae      

Nucula hartvigiana Syllinae     

Paracalliope novizealandiae Waitangi brevirostris     

Phoxocephalidae      

Polydorid complex      
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Table 11. Relationship between the dissimilarity matrix obtained using each of several subsets of taxa versus the 
Euclidean distance matrix obtained from either PC1.500 or PC1.63, as indicated. The set labeled “All” indicates 

analysis of the full set of 102 variables. ρ = the Spearman rank correlation coefficient, no. vars = the number of 
variables in the subset. 

 PC1.500   PC1.63  
Subset no. vars ρ  no. vars ρ 
All, BC, sqrt 102 0.204  102 0.374 
All, Euc, ln(x+1) 102 0.123  102 0.297 
All, MG 102 0.202  102 0.347 
Sensitivity, BC, sqrt 22 0.284  22 0.163 
Sensitivity, Euc, ln(x+1) 22 0.230  22 0.055 
Sensitivity, MG 22 0.299  22 0.171 
Ecological, BC, sqrt 43 0.343  43 0.204 
Ecological, Euc, ln(x+1) 43 0.282  43 0.121 
Ecological, MG 43 0.327  43 0.194 
BVSTEP, BC, sqrt 16 0.589  20 0.438 
BVSTEP, Euc, ln(x+1) 17 0.572  12 0.536 
BVSTEP, MG 17 0.568  5 0.454 
Scatter, BC, sqrt 14 0.479  7 0.307 
Scatter, Euc, ln(x+1) 14 0.446  7 0.287 
Scatter, MG 14 0.446  7 0.296 
DISTLM, BIC, ln(x+1) 7 0.411  8 0.260 

 
 
 

Table 12. Results of DISTLM models (multiple regression) to explain variation in either PC1.500 or PC1.63 on the 
basis of each of several sets of taxon variables. No. vars = the number of variables included in the regression, % 
explained = percentage of variation in the response variable (in each case) explained by each set of regression 

variables, SSRes = the residual sum of squares, BIC = information criterion which takes into account the number of 
variables in the model (smaller values indicate a better model). 

 PC1.500 

Subset no. vars % explained SSRes BIC 

Sensitivity, Euc, ln(x+1) 22 70.26% 43.680 46.66 

Ecological, Euc, ln(x+1) 43 82.47% 25.751 96.13 

BVSTEP, Euc, ln(x+1) 17 78.17% 32.067 -0.35 

Scatter, Euc, ln(x+1) 14 75.16% 36.490 -3.07 

DISTLM, BIC, ln(x+1) 7 77.66% 32.817 -42.42 

 

 PC1.63 

Subset no. vars % explained SSRes BIC 

Sensitivity, Euc, ln(x+1) 22 60.32% 37.433 34.15 

Ecological, Euc, ln(x+1) 43 80.33% 18.552 69.58 

BVSTEP, Euc, ln(x+1) 12 71.41% 26.967 -36.35 

Scatter, Euc, ln(x+1) 7 55.18% 42.277 -21.91 

DISTLM, BIC, ln(x+1) 8 75.88% 22.750 -67.71 

Note that there is a difference between calculating a correlation between ranks of 

distance matrices (Table 11) and direct regression modeling of the variance in pollution 

gradients (Table12). The regression models were only done for subsets that had been 
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obtained originally within a Euclidean distance framework. For each of PC1.500 and 

PC1.63, three approaches yielded the best subsets of variables for modelling, according 

to either the DISTLM analysis or Spearman’s rho (ρ). These were: (i) BVSTEP on Bray-

Curtis dissimilarities of square-root transformed abundances, (ii) BVSTEP on Euclidean 

distances of ln(x+1)-transformed abundances or (iii) step-wise selection using BIC on 

ln(x+1)-transformed abundances. Therefore, CAP analyses were done to explore these 

subsets further. 

A summary of these CAP analyses is shown in Table 13 and accompanying plots are 

shown in Fig. 10. For PC1.63, the strongest canonical correlation was obtained using 

the subset identified using BIC with step-wise regression on ln(x+1)-transformed 

variables. For PC1.500, the subset chosen using the BVSTEP algorithm on Bray-Curtis 

dissimilarities of square-root transformed abundances and the subset obtained using 

DISTLM step-wise regression on ln(x+1)-transformed variables performed well. The 

predictive capacity of these subsets also appears to be the best, as they achieved the 

smallest leave-one out residual sum of squares. It is rather impressive that the step-

wise regression subsets obtained using DISTLM performed so well, especially given 

that these subsets had only 7 or 8 variables (for PC1.500 or PC1.63, respectively). Also 

interesting is the fact that the CAP models obtained using subsets were better than 

those obtained using the full set of data in the case of PC1.63. This was not the case, 

however, for PC1.500, for which prediction using the whole complement of species 

performed better than CAP models using only subsets (compare results in Table 13 

with those in Table 8). 

Table 13. Summary of CAP analyses to model pollution gradients (obtained from PCA on log metal concentrations) 
using each of 3 different subsets of taxa from the faunal data, as indicated. Results are given separately for the 
metal concentrations from the mud fraction (< 63 μm) and from the total sample (< 500 μm). p = the number of 
variables in the subset, m = the number of PCO axes used for the analysis, prop.G = the proportion of the total 

variation in the dissimilarity matrix explained by the first m PCO axes, SSRES = the leave-one-out residual sum of 
squares, δ1 is the squared canonical correlation for the canonical axis, correl = the correlation between the 

canonical axis and the pollution gradient. 
 < 63 μm 

 p m prop.G SSRES δ1 correl 

BVSTEP, BC, sqrt 20 10 0.996 0.513 0.672 0.820 

BVSTEP, Euc, ln(x+1) 12 12 1.000 0.527 0.714 0.845 

DISTLM, BIC, ln(x+1) 8 8 1.000 0.320 0.759 0.871 

 

 < 500 μm 

 p m prop.G SSRES δ1 correl 

BVSTEP, BC, Sqrt 16 3 0.691 0.272 0.748 0.865 

BVSTEP, Euc, ln(x+1) 17 6 0.865 0.306 0.740 0.860 

DISTLM, BIC, ln(x+1) 7 4 0.948 0.296 0.733 0.856 
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Fig. 10. CAP analyses of pollution gradients for the whole sample (< 500 μm, left) and the mud fraction 
(< 63 μm, right) versus fauna for each of three different subsets, as indicated. Estimates of the intercept (a)

and slope (b) of the predictive relationship as well as the correlation (r) are shown in blue on each plot.
Also in blue are dotted lines demarcating the 5 pollution groupings. The number of variables (i.e., the

number of taxa, p) in each subset are indicated in red.
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6.5 Refinements using physical variables 

For many of the physical variables, a log transformation worked virtually as well as or 

better than the optimal power transformation to render the data approximately normal 

(Appendix 4). There were two exceptions to this: for the coarse sand fraction, the best 

transformation was obtained using a power of −0.79 and for the silt and clay fraction, 

the best transformation was obtained using a power of 0.37 (Appendix 4). Thus, in what 

follows, all of the physical variables were transformed to logs except for these two 

variables, which were transformed using their corresponding optimal power 

transformation, as indicated. 

A PCA of the transformed and normalised physical variables showed that most of the 

variation among sites in terms of these physical characteristics was the contrast 

between the silt and clay fraction on the one hand and the coarse sand fraction on the 

other (Fig. 11). The degree of exposure (CWE and FWE) also contributed a reasonable 

amount towards the total variation in physical characteristics among sites (Fig. 11, Table 

14). 
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Table 14. Coefficients (also called “weights” or “eigenvectors”) and the percentage of the total variance explained 
by each of the principal component axes from a PCA on normalised, optimally-transformed physical variables. The 

mean and standard deviation (SD) used for the normalisation of each variable is shown. Most variables were 
transformed using natural logs (or ln(x+1) if there were zeros), but coarse sand was transformed using a power 

transformation of -0.79 and silt and clay was transformed using a power transformation of 0.37. 

   PC1 PC2 PC3 PC4 PC5 PC6 

   47.9% 20.2% 13.3% 8.5% 7.2% 2.9% 

Variable Mean SD Eigenvectors     

Coarse sand' 0.526 0.365 -0.426 0.275 -0.172 0.843 0.035 -0.028 

ln(Medium sand + 1) 2.257 1.444 -0.283 0.719 0.229 -0.342 -0.093 -0.474 

ln(Fine sand) 3.162 0.871 -0.368 -0.298 -0.739 -0.246 -0.154 -0.382 

Silt and Clay' 7.251 3.588 0.531 -0.164 0.080 0.310 0.069 -0.764 

ln(FWE) 0.775 1.074 -0.365 -0.433 0.523 0.085 -0.618 -0.127 

ln(CWE + 1) 1.963 1.149 -0.434 -0.322 0.304 -0.089 0.761 -0.168 
 

Hierarchical agglomerative group-average cluster analysis of the Euclidean distance 

matrix based on the normalised transformed physical variables did not show very clear 

groupings of sites (Fig. 12). An arbitrary slice at a Euclidean distance value of 3.9 (which 

was also made to avoid obtaining a single site as a separate group on its own) yielded 2 

groups. SIMPROF analysis indicated that there were 5 distinct groups (Fig. 12). Analysis 

by k-means partitioning suggested that the best grouping structure was achieved for 

k = 2 groups, with the highest value of CHk = 293.85 (Table 15). 

The SIMPROF 5-group solution seemed slightly better than the others according to the 

ANOSIM test statistic, whereas the k-means 2-group solution seemed best according 

to the PERMANOVA test statistic, which is based directly on inter-point distances 

(Table 16). Due to the fact that the SIMPROF 5-group solution had large discrepancies 

in the number of sites per group (one group had only one sample and another group 

had only three samples, see Fig. 12) and the k-means solution yielded groups that were 

clearly distinct in the PCA (Fig. 11), the 2-group solution was retained for further 

analysis. 
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Table 15. Values of the Calinski-Harabasz criterion (CHk) for the k-means partitioning solutions from k = 2-12 
groups for the normalised transformed physical variables. 

No. groups 

(k) 

 

CHk 

2 293.85 

3 202.06 

4 159.60 

5 132.82 

6 114.47 

7 100.97 

8 97.10 

9 88.44 

10 85.27 

11 74.25 

12 75.23 
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Transformed physical variables, Euclidean distance

Fig. 12. Hierarchical agglomerative group-average cluster analysis among samples on the basis of optimally transformed physical variables
using Euclidean distances. The splits in red were not statistically significant, by SIMPROF, which indicated 12 groups of samples. The

single horizontal line indicates an arbitrary slice at a distance value of 3.9 which yielded 2 groups. Labels indicate
the year and site number (as per Appendix 1) for each sampling unit.
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Fig. 13. Map of the Auckland region showing each of the 81 sites in terms of two groups on the basis of
k-means partitioning of the six physical variables  (F = relatively fine sediments and lesser exposure,

C = relatively coarse sediments with greater exposure).
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Table 16. Values of the ANOSIM R-statistic and the PERMANOVA F-statistic for the transformed normalized 
physical variables with respect to each of the grouping solutions. 

 k ANOSIM R 

PERMANOVA 

F 

k-means 2 0.669 43.071 

Slice 2 0.640 37.957 

SIMPROF 5 0.741 22.953 
 

The two groups identified by k-means are interpretable as: a group consisting of 

samples from sites having relatively finer sediments and lesser wind exposure (“group 

F”), and a second group consisting of samples from sites having relatively coarser 

sediments and greater wind exposure (“group C”), as evidenced by their positions in 

the PCA plot (Fig. 11). There were 51 samples in group F and 30 samples in group C. A 

map identifying each site by reference to this two-group k-means solution on the 

physical variables is provided in Fig. 13. 

 

Table 17. Summary of CAP analyses relating biotic assemblages to pollution gradients based on either the whole 
sample (< 500 μm) or on the mud fraction (< 63 μm) done separately on separate datasets obtained by splitting 
the data according to k-means partitioning of physical variables into two groups. Set F = fine sediments, more 

sheltered (51 samples). Set C = coarser sediments, more exposed (30 samples). Table headings are as given for 
Table 13 above. 

 <500 μm 

 Set m prop.G SSRES δ1 correl 

BC, sqrt F 9 0.845 0.370 0.726 0.852 

Euc, ln(x+1) F 6 0.759 0.407 0.669 0.818 

Mod. Gower F 9 0.733 0.414 0.699 0.836 

BC, sqrt C 8 0.822 0.545 0.619 0.787 

Euc, ln(x+1) C 6 0.747 0.643 0.572 0.756 

Mod. Gower C 7 0.669 0.513 0.643 0.802 

 

 < 63 μm 

 Set m prop.G SSRES δ1 correl 

BC, sqrt F 5 0.668 0.585 0.497 0.705 

Euc, ln(x+1) F 4 0.641 0.660 0.478 0.692 

Mod. Gower F 6 0.613 0.622 0.489 0.699 

BC, sqrt C 17 0.991 0.162 0.970 0.985 

Euc, ln(x+1) C 15 0.948 0.193 0.943 0.971 

Mod. Gower C 14 0.886 0.260 0.909 0.953 
 

Next, CAP analyses were done separately for each group on the basis of each of three 

different dissimilarity measures relating the biota to each of the identified pollution 
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gradients: PC1.500 or PC1.63 (Table 17). The best relationship for the more sheltered 

habitats (F) was with the metal concentrations measured from the whole sample (<500 

microns), whereas the best relationship for the more exposed habitats (C) was with the 

metal concentrations measured from the weak acid digestion of the mud fraction (<63 

microns) Fig. 14). Although similar results were obtained using any of the three 

dissimilarity measures, those done using Bray-Curtis on square-root transformed 

abundances tended to achieve the highest canonical correlations (Fig. 14). Indeed, 

when the analysis was based on Bray-Curtis from square-root transformed data, the 

squared canonical correlation between the biota from samples having coarser 

sediments (C) and PC1.63 was 0.970, the strongest relationship obtained for any of the 

canonical models examined thus far. Such high correlations can be a little deceptive, 

however, as these values also depend on the number of PCO axes (m) that were used 

in the model, which was fairly large (m � 14) for those analyses of biota from samples in 

group C versus PC1.63. Nevertheless, the value of m in all cases was chosen so as to 

minimize the leave-one-out residual sum of squares, which in this case is substantially 

smaller for these models than for the models of group C samples versus PC1.500. 

 
< 63 μm< 500 μm

Group F

Group C

Fig. 14. CAP analyses of pollution gradients for the whole sample (< 500 μm, left) and the mud fraction 
(< 63 μm, right) versus fauna for each of 2 groups (F = finer sediments, less exposed and 

C = coarser sediments, more exposed) obtained using k-means partitioning on the basis of Euclidean
distances, as indicated.  Estimates of the intercept (a) and slope (b) of the predictive relationship

as well as the correlation (r) are shown in blue on each plot. Also in blue are dotted lines demarcating
the 5 pollution groupings.
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Importantly, the partitioning of the data on the basis of the physical variables resulted in 

better CAP models of PC1.63 for samples in group C. This suggests that biota occurring 

in such habitats (i.e. with coarser sediments and greater exposure) are more sensitive 

to pollutants measured in the < 63 μm fraction. The relationship of the biota to PC1.500 

was not, however, necessarily improved by this partitioning for samples in group F, but 

was largely unchanged. Prediction of ecosystem health for these sites versus PC1.500 

would be expected to be marginally better using the entire dataset than using only sites 

from group F. Independent validation is required, however, to determine the best 

overall modeling approach across the region. These analyses suggest that one possible 

approach may be to model sites in group C using PC1.63 and sites in group F using 

PC1.500.  

For comparison, we also considered the previously defined habitat definitions of 

Settling Zone and Outer Zone (ARC 2002), which correspond roughly to group F and 

group C, respectively (Appendix 8). CAP analyses of PC1.500 and PC1.63 were done 

separately for each of the SZ and OZ groups, and results were similar to those obtained 

for groups F and C (compare Table 17 with Appendix 9). However, CAP models of 

PC1.63 versus group C were stronger than those of PC1.63 versus OZ. 

Subsets of variables that might be driving relationships between the biota and the 

pollution gradients (either PC1.500 for group F or PC1.63 for group C) were identified 

using (i) BVSTEP on BC dissimilarities of sqrt-transformed data; (ii) BVSTEP on 

Euclidean distances of ln(x+1)-transformed data and (iii) step-wise selection of ln(x+1)-

transformed data using DISTLM. Results of CAP and RELATE analyses for each of 

these subsets are given in Table 18 and each subset is identified in Table 19. 

 

Table 18. Summary of CAP analyses for subsets obtained using separate groups of samples identified from 
physical variables: no. vars = the number of  variables in the subset, ρ = Spearman’s rank correlation with the 

Euclidean distance matrix from the pollution gradient. Other headings are as given in Table 13 above. 

 Group C, < 63 μm 

Subset no. vars ρ m prop.G SSRES δ1 correl 

BVSTEP, BC, sqrt 22 0.690 5 0.868 0.245 0.836 0.914 

BVSTEP, Euc, ln(x+1) 9 0.811 3 0.990 0.538 0.654 0.809 

DISTLM, BIC, ln(x+1) 28 0.340 6 0.862 0.212 0.853 0.924 

 

 Group F, < 500 μm 

Subset no. vars ρ m prop.G SSRES δ1 correl 

BVSTEP, BC, sqrt 16 0.569 7 0.989 0.298 0.812 0.901 

BVSTEP, Euc, ln(x+1) 10 0.648 2 0.780 0.516 0.507 0.712 

DISTLM, BIC, ln(x+1) 6 0.275 5 0.996 0.331 0.749 0.865 
 

For group C, none of the subsets of variables achieved canonical correlations with 

PC1.63 as high as those obtained using the whole set of variables (compare the values 
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in Table 17 and Table 18). However, for group F, both the BVSTEP subset based on 

Bray-Curtis (16 variables, correlation = 0.901) and the subset based on DISTLM of 

ln(x+1)-transformed abundances (6 variables, correlation = 0.865) were improvements 

on the model of the group F sites that included all variables. These were also 

comparable to the models for PC1.500 that included all of the sites (cf. Table 8). 
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Table 19. Subsets of taxa for group F samples versus PC1.500 and for group C samples versus PC1.63 identified by using BVSTEP on the basis of various dissimilarity measures (as 
indicated), or by using DISTLM with the BIC criterion in a step-wise multiple regression of ln(x+1)-transformed variables. 

GROUP F versus PC1.500 
BVSTEP, BC, sqrt BVSTEP, Euc, ln(x+1) DISTLM, BIC 

GROUP C versus PC1.63 
BVSTEP, BC, sqrt BVSTEP, Euc, ln(x+1) DISTLM, BIC 

Aonides oxycephala Aonides oxycephala Aonides oxycephala Aglaophamus macroura Aglaophamus macroura Anthopleura aureoradiata 
Nereidae Scolelepis spp.  Austrovenus stutchburyi Alpheus sp. Alpheus sp. Aonides oxycephala 
Scolelepis spp.  Bivalve unid. Glycera spp. Amphibola crenata Anthuridae Aquilaspio aucklandica 
Anthopleura aureoradiata Colurostylis spp. Heteromastus filiformis Anthuridae Crassostrea gigas Aricidea sp. 
Bivalve unid. Magelona sp. Nereidae Aricidea sp. Hesionidae Asychis amphiglypta 
Colurostylis spp. Musculista senhousia Scolelepis spp.  Cirolana sp. Magelona sp. Barnacles 
Edwardsia sp. Orbinidae  Cominella adspersa Minuspio sp. Cominella glandiformis 
Hesionidae Spionidae   Cominella glandiformis Platyhelminth Cossura consimilis 
Isopod other Zeacumantus lutulentis  Corophidae Sipunculid Crassostrea gigas 
Magelona sp. Haminoea zelandiae  Crassostrea gigas  Cyclaspis thomsoni 
Mantis shrimp   Felaniella zelandica  Helice, Hemi., Macrop. 
Musculista senhousia   Hesionidae  Hiatula siliqua 
Orbinidae   Hiatula siliqua  Isopod other 
Spionidae    Magelona sp.  Macroclymenella stewart. 
Zeacumantus lutulentis   Minuspio sp.  Mactra ovata 
Zediloma subrostrata   Mysidacea  Magelona sp. 
   Nereidae  Nereidae 
   Phyllodocid spp.  Notoacmea spp. 
   Polynoid  Nucula hartvigiana 
   Sipunculid  Opistobranch 
   Syllinae  Orbinidae 
   Xymene sp.  Paphies australis 
     Platyhelminth 
     Polydorid complex 
     Pontophilus australis 
     Sipunculid 
     Trochodota dendyi 
     Xymene sp. 
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6.6 Validation 

The position of each of the validation sites on each of the pollution gradients (i.e. for the 

total sample, PC1.500, and for the < 63 μm fraction, PC1.63) based on their actual 

measured metal concentrations are shown in Table 20. There was quite a spread of 

samples in the validation set in terms of levels of contaminants, with several sites in 

each of the 5 pollution groupings obtained for both gradients. It is interesting to note 

also that some sites differed rather strongly in their values between the two gradients. 

For example, both Newmarket (site 44) and Coxs (site 11) were quite low (group 2) 

along pollution axis PC1.500, but were quite high (group 5) along pollution axis PC1.63. 

A visual representation of the pollution levels in terms of the total sample (PC1.500) and 

in terms of the mud fraction (PC1.63) for all of the sites in this study are shown on the 

maps in Fig. 15 and Fig. 16, respectively. 

 

Table 20. Allocation to a physical grouping and positions for each validation site along each pollution gradient, 
along with its allocation to a rank state of benthic health in each case. 

Year Site no. Site name 

Physical 

group PC1.500 rank.500 PC1.63 rank.63 

2002 2 Auckland Airport C -2.085 1 -1.922 1 

2005 11 Coxs C -1.103 2 1.406 5 

2005 17 Henderson Upper F 1.329 5 0.770 4 

2005 18 Herald Island F -0.438 3 -0.180 3 

2005 21 Hobson - Purewa Bridge F 0.776 4 0.172 3 

2004 25 Kendalls C -1.744 1 -0.730 2 

2006 26 Little Shoal Bay C -1.134 2 -0.099 3 

2004 32 Mangemangeroa E C -0.700 3 -0.945 2 

2005 36 Mangere Inlet: Tararata Creek F 0.816 4 -0.188 3 

2005 44 Newmarket C -0.991 2 1.033 5 

2004 48 Okura J C -2.095 1 -2.198 1 

2005 53 Pakuranga F 1.600 5 1.534 5 

2002 80 Whau Entrance, WHO A C -1.583 2 0.170 3 

2005 81 Whau Lower F 1.255 5 0.756 4 
 

Section 4.5 above describes models which include physical information. Specifically, 

sites belonging to group C (relatively coarse sediments, greater exposure) were 

modeled with PC1.63 and sites belonging to group F (relatively fine sediments, less 

exposure) were modeled separately with PC1.500. To perform this kind of “split” 

modeling with the validation sites, it was first necessary to allocate each validation site 

to one of the two physical groups (C or F). This was done by placing each site into the 

two-dimensional PCA diagram shown in Fig. 11 using the eigenvector coefficients, 

means and standard deviations shown in Table 14 above. The result is shown in Fig. 17 

below. From this, each validation site was easily allocated into one of the two groups, 
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as shown in Table 20. Although site 11 was placed into group C, it was perhaps 

marginal. The allocations shown in Table 20 above and on the two-dimensional PCA plot 

were also obtained exactly, however, when a CAP discriminant analysis on the physical 

data was used instead (results not shown here). There were 8 validation sites allocated 

to group C and 6 allocated to group F. 
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Fig. 15. Map of the Auckland region showing pollution groupings on the basis of k-means partitioning 
(1 = healthy, 5 = polluted) of the first principal component of log metal concentrations (Cu, Pb and Zn)

for the whole sample (< 500 μm) at each of 95 sites, including validation sites (denoted by *).
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Not all of the models were considered as part of the validation process: only those 

which showed some clear promise based on the modeling exercise itself or were of 

interest for a priori reasons (i.e. the sensitivity and ecological subsets) were pursued 

further. This did result, however, in quite a large number of potential models. The 

residual sum of squares calculated as the sum of squared deviations of predicted values 

from the actual values along each pollution gradient (SSRES) are shown for all relevant 

models in Table 21. 

 

Interestingly, the best models for PC1.500 were obtained from those that used only 

subsets of taxa. Overall, the best two models were the 16 taxa of the BVSTEP subset 

obtained on the basis of Bray-Curtis dissimilarities of square-root transformed 

abundances and the a priori chosen sensitivity subset of 22 taxa (Table 21). Even 

though the sensitivity subset did not show a particularly strong canonical correlation 

compared to some of the other subsets, it performed well for prediction. The subset 

obtained using the BIC criterion from step-wise selection of ln(x+1)-transformed 

abundances with DISTLM also performed surprisingly well, especially given that it 

included only 7 taxa. 



 60 

 

Table 21. Models of benthic ecosystem health and their associated sum of squared deviations of predicted from 
actual values along relevant pollution axes (SSRES). 

 PC1.500 

Model SSRES 

BVSTEP subset (16 vars), BC, sqrt 7.224 

Sensitivity subset (22 vars), BC, sqrt 7.582 

DISTLM BIC subset (7 vars), Euc, ln(x+1) 8.786 

BC, sqrt 9.252 

Modified Gower 9.540 

BVSTEP subset (17 vars), Euc, ln(x+1) 9.718 

Sensitivity subset (22 vars), Euc, ln(x+1) 10.657 

Euc, ln(x+1) 13.436 

Ecological subset (43 vars), BC, sqrt 56.353 

 

 PC1.63 

Model SSRES 

Modified Gower 8.318 

BC, sqrt 8.722 

Sensitivity subset (22 vars), BC, sqrt 10.217 

Sensitivity subset (22 vars), Euc, ln(x+1) 11.777 

Euc, ln(x+1) 12.253 

BVSTEP subset (20 vars), BC, sqrt 13.345 

DISTLM BIC subset (8 vars), Euc, ln(x+1) 13.548 

Ecological subset (43 vars), BC, sqrt 16.546 

BVSTEP subset (12 vars), Euc, ln(x+1) 34.175 

 

 Split analyses (PC1.63 for group C and PC1.500 for group F) 

Model SSRES 

BC, sqrt 11.575 

BVSTEP subset1, BC, sqrt 11.938 

DISTLM BIC subset2, Euc, ln(x+1) 16.966 
1(22 vars for C and 16 vars for F)  
2(28 vars for C and 6 vars for F)  

 

The best model for PC1.500 that actually used all of the biological data (102 taxa) was 

that obtained using Bray-Curtis on square-root transformed abundances. This CAP 

model analysis itself, with validation sites superimposed, is shown in Fig. 18(a). Fig. 

18(b) shows a scatter plot of predicted versus actual values of the validation sites along 

PC1.500 for this model. The line with a slope of 1 and intercept of 0 is drawn to help 

interpret the positions of the points. If prediction is exact, the points would lie precisely 

on this line. In this model, for example, site 44 is above the line and thus was predicted 

from the biota to be more polluted than it actually was (i.e., to contain greater total 
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metal concentrations than it actually did). In contrast, site 21 was predicted to be less 

polluted than it actually was. This latter kind of error is more dangerous and has more 

dire consequences, from a management perspective. Thus, models that minimize 

errors in this direction should be preferred. Also shown on the plot is b, the slope of the 

relationship and r, the strength of the relationship (correlation) between the predicted 

and the actual values. A good model will have both its b and r values as close as 

possible to 1 in value. 

To understand how the model validation procedure works, let’s take an example and 

trace it through the process. Consider site 18 (Herald Island). Using all biotic variables, 

we start by calculating the Bray-Curtis dissimilarity between site 18 and each of the 81 

samples in the model set (after sqrt transformation) and, based on these dissimilarities 

alone, place it in the multivariate space and thus project its position along the CAP axis 

(the x-axis of Fig. 18(a)). In this case, the CAP axis value happens to be 0.0642. Now, 

using the model slope (b = 12.12) and intercept (a = 0.00), we can therefore calculate 

the predicted position of this point along the pollution gradient PC1.500, namely: 

PC1.500 = 0.00 + 12.12 × CAP = 12.12 × 0.0642 = 0.778. Once we have obtained this 

predicted value (0.778), we can then compare it with the actual value along PC1.500 

obtained according to the metal concentrations measured at the site and the equation 

given in section 4.1. Plugging in the values of Cux = 7.73, Pbx = 15.067 and Znx = 

75.33, we obtain an actual value along PC1.500 for site 18 of −0.438 (as shown in Table 

20). The predicted value of 0.778 is clearly well above the actual value of −0.438, 

indicating that the model, in this case, overestimated the degree of pollution at the site. 

This is reflected in the plot in Fig. 18(b), which shows point 18 to be quite some 

distance above the line of perfect prediction (with a slope of 1.0). 
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Fig. 18. (a) CAP model of pollution gradient for the whole sample (< 500 μm, top) on the basis of
Bray-Curtis dissimilarities of square-root transformed abundances, with validation sites shown in black

and (b) predicted values vs. actual values for validation sites along PC1.500 for the model. The line on the
plot has a slope of 1.0 and all points would lie on the line if prediction from the model were perfect.
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In general, however, the benthic health model obtained using CAP on Bray-Curtis using 

all the data appears to do a pretty reasonable job of predicting the positions of validation 

sites. Most of the validation sites lie close to the line and the correlation between 
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predicted and actual values is 0.79. Nevertheless, considerable improvement is 

obtained using the best overall model: the BVSTEP subset (16 taxa) with Bray-Curtis on 

square-root transformed data (Fig. 19). Here, almost all of the points lie close to the line 

and the strength of the relationship between predicted and actual values is improved (r 
= 0.84). What is more, those sites which are deviating from the line (i.e. site 48 and site 

18) do so in a way that would lead to a conservative remedial action in line with the 

precautionary principle. That is, the model predicts that these particular sites are more 

polluted than they actually are. Although it cannot be stated that this pattern of 

conservatism would necessarily be repeated with a new set of validation sites, the 

combination of accuracy and conservatism seen here does bode well for the use of this 

model in general. 

The subsets obtained using either the sensitivity subset or the DISTLM subset did not 

appear to be as successful as the BVSTEP subset, at least for these validation sites 

(Fig. 20). Although the degree of correlation (r) was comparable to that obtained by the 

BVSTEP subset, a fairly important difference was seen in the size of the slope (b). For 

these two subsets, the slope of the relationship between predicted and actual values 

moved closer to zero. Thus, even though the degree of relationship was fairly strong, 

the decrease in the value of the slope away from a value of 1 and towards zero 

indicated that the replicability of the pollution gradient (as in a 1:1 relationship) was not 

as good for these models. These models would have a tendency to predict healthy 

sites to be more polluted than they actually are and to predict polluted sites to be 

healthier than they actually are. 

For PC1.63, the best model was obtained using the Modified Gower measure on all 

taxa in the biotic community (Table 21, Fig. 21). This model performed quite well for the 

majority of the validation sites: many of the predictions are extremely close to their 

actual values along the PC1.63 axis (Fig. 21(b)). It appears that the model essentially 

had trouble placing sites 48, 44 and 11 onto their correct positions along the axis (Fig. 

21(b)). Site 48 was overestimated, while sites 44 and 11 were underestimated. The 

model obtained using Bray-Curtis on square-root transformed data performed similarly 

to the model based on the Modified Gower measure; it also apparently had trouble 

placing these three points, in particular, onto their correct positions on the axis (Table 

21, Fig. 22(a)).  Unfortunately, classification of the sites into groups based on their 

physical variables and the use of separate models for these (groups C and F) resulted in 

no clear improvement in terms of predictive capability (Fig. 22(b), (c)). This was rather 

surprising, given the high canonical correlation for PC1.63 versus group C (Table 17, Fig. 

14). As stated earlier, however, a high canonical correlation does not necessarily mean 

good predictive power. For example, one can achieve a high canonical correlation 

simply by increasing the number of PCO axes (m) to use in the CAP analysis. This is 

why the leave-one-out residual sum of squares (or allocation success, in the case of 

groups) is an essential statistic to use in the interpretation of the potential utility of a 

CAP model. It also emphasizes that no model’s worth can be understood without some 

independent model validation procedure, as has been done here. 
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Fig. 20. Predicted values vs. actual values along PC1.500 for each of two CAP models: (a) based on
the subset of taxa obtained using the BIC criterion and DISTLM, with Euclidean distances on ln(x+1)-

transformed abundances and (b) based on the a priori chosen sensitivity subset with Bray-Curtis 
dissimilarities on square-root transformed abundances. The line on each plot has a slope of 1.0 and all

points would lie on the line if prediction from the model were perfect.  
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Fig. 21. (a) CAP model of pollution gradient for the mud fraction (< 63 μm, top) on the basis of
Modified Gower dissimilarities (log base 10), with validation sites and (b) predicted values vs.
actual values along PC1.63 for the model. The line on the plot has a slope of 1.0 and all points

would lie on the line if prediction from the model were perfect.
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Fig. 22. Predicted vs. actual values for each of three CAP models: (a) PC1.63 modelled by all taxa on the basis of
Bray-Curtis, square-root transformed abundances, (b) a split model based on all  taxa and (c) a split model based
on BVSTEP subsets of taxa. For split models, separate CAPmodels were applied to samples in group C (red) for

PC1.63 and in group F (in blue) for PC1.500.  
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7 DISCUSSION 

7.1 Relating PC gradients to existing sediment quality guidelines 

High correlation among the three metal contaminants, copper (Cu), lead (Pb) and zinc 

(Zn), measured from sites across the region indicated that elevated levels of these 

metals currently tend to occur together in soft-sediment intertidal benthic habitats. 

Potential ecological impacts of simultaneous multiple stressors are not well understood 

and are the subject of ongoing research. However, this high degree of spatial 

correlation among the metals allowed a single pollution gradient to be derived from the 

data, using principal components analysis (PCA). A separate gradient was built from 

measurements of metal concentrations from the total sediment sample (PC1.500) and 

from the mud fraction (PC1.63), and 5 groups of samples along each gradient were 

identified using a k-means partitioning algorithm. Each PC axis is a linear combination of 

these three metal variables, so new samples can be positioned along each of these 

axes, given measured concentrations of each of the three metals. 

There are a number of existing guidelines from various sources which provide threshold 

values for these metals in sediments, above which a given site might be classified as 

“polluted” (Table 22). Using some of these guidelines, the ARC has developed and 

adopted certain “Environmental Response Criteria” (ERC) for assessing the level of 

pollution in Auckland’s benthic intertidal habitats (ARC 2004). These criteria can be used 

to classify sites into one of three categories: “green” (= healthy), “amber” or “red” (= 

polluted) on the basis of the levels of individual contaminants (Table 22). 

 

Table 22. Existing sediment quality guidelines from various sources, as indicated, along with their positions along 
PC axes derived in the present study. ISQG = Interim Sediment Quality Guidelines and ERC = Environmental 

Response Criteria. Values for the metals are given as concentrations in mg/kg. 

Source Guideline Zn Cu Pb PC1.500 PC1.63 

ANZECC (2000) ISQG-Low 200 65 50 2.090 1.418 

ANZECC (2000) ISQG-High 410 270 220 4.213 3.530 

Long et al. (1995) Effects-Range Low (ER-L) 150 34 46.7 1.500 0.880 

Long et al. (1995) Effects-Range Median (ER-M) 410 270 218 4.208 3.524 

MacDonald (1996) Threshold Effects Level (TEL) 124 18.7 30.2 0.776 0.176 

MacDonald (1996) Probable Effects Level (PEL) 271 108 112 3.035 2.381 

ARC Blueprint (2004) ERC-Green <124 <19 <30 0.782 0.180 

ARC Blueprint (2004) ERC-Amber 124-150 19-34 30-50   

ARC Blueprint (2004) ERC-Red >150 >34 >50 1.540 0.925 

By simply “plugging in” the values for the metal concentrations provided by these 

guidelines into the equation given in section 3.1 above, we can determine the value 

they obtain along each of the PC axes we have derived, providing a clearer context for 



 69 

the present study and its potential value for ongoing monitoring in the region (Figs. 23, 

24). 
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Fig. 23. Values of sediment quality guidelines given in Table 22 along the pollution
gradient for the total sediment sample, PC1.500. The first bar shows the 5 groups

derived in the present study, next is shown the environmental response criteria (ERC)
as green, amber and red. Other guidelines are shown as single values along the axis.

 
 

From these graphics, it is clear that ISQG-High, ER-M and PEL indicate extremely high 

levels of pollution that are all out of range of the measures we have from sites in our 

study of the Auckland Region. Also, for PC1.500, our groups labeled 4 and 5 occur at 

slightly lower values along the pollution gradient than do the existing ERC amber and 

red guidelines (Fig. 23). Our groupings are also more refined over the whole range of 

sites and yield discrimination along the lower end of the scale, suggesting that 

community health is affected below the current guidelines, and providing earlier 

warning signs of pollution.  Similar observations may be made for PC1.63, although in 

this case, our groups 4 and 5 correspond well with the existing amber and red 

guidelines of the ERC. As for PC1.500, this model also provides better discrimination 

for variation in lower values (1, 2 and 3) along the pollution gradient (Fig. 24). 
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These results suggest that the current criteria are too high.  Sites occurring in group 5 

are polluted, according to current criteria and the health model. However, rather than 

considering those in group 4 as borderline, sites in group 3 may be considered as a 

more “critical” group. Sites in this category should perhaps be receiving the greatest 

attention with respect to both monitoring and potential remedial management action. 

Sites in groups 1 or 2 can be considered as healthy, although changes in community 

structure are beginning to be detected. This higher sensitivity may be a result of: (i) 

differences between field situations and laboratory tests, or (ii) differences between 

guidelines based on single contaminants and those measuring multiple stresses. 

Some caveats are important to keep in mind with respect to the proposed PC pollution 

axes. First, their use relies upon there being high correlation in the levels of copper, zinc 

and lead in the environment across the region. This is appropriate in our current 

context; the PC axes will give a clear signal that integrates information about these 
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simultaneous stressors genuinely occurring together in the environment. However, if a 

site were to experience increases in just one or two of the three contaminants, but not 

in all of them, then the sediment quality guidelines which provide individual threshold 

values for each metal would be more sensitive than the overall pollution gradient 

measure at picking up such a change. So, our derived PC axes should be used in 

conjunction with existing individual metal-based criteria. 

Although concentrations of the three metals are highly correlated, zinc levels tend to be 

closer to upper guideline values and therefore have the potential to have a greater 

influence on biological effects than the other two contaminants. In addition, lead levels 

are more variable through space and time, due to the removal of the key source of lead 

(i.e., leaded petrol).  Lead levels are therefore likely to decline through time, whereas 

copper and zinc levels are likely to continue to increase (Williamson and Mills 2002). 

Relationships between existing concentrations and accumulation rates demonstrate 

this (S. Kelly, pers.comm.). Thus, although the pollution gradient identified here is likely 

to prove very useful in the immediate term, the separate guidelines for individual metal 

concentrations should not be abandoned. Longer term changes in relative metal 

concentrations across the region may also result in the evolution of new models in the 

future that may treat metals separately, especially if the degree of spatial correlation 

among metals in the environment deteriorates. 

7.2 The best models of benthic ecosystem health 

Ecological assemblages generally reflected pollution gradients very well, all along their 

range. The present study identified clear methods for modeling the pollution gradient 

axes using ecological data. The best models of benthic ecosystem health were those 

which obtained high canonical correlations with the pollution gradient(s) and which had 

a low level of error when new sites were tested (validation). 

The ARC’s “Blueprint for monitoring urban receiving environments” (2004) indicated 

that the ERC guidelines should be applied using metal concentrations from the total 

sediment sample (<500 μm) for sites in the inner Settling Zones and using metal 

concentrations from the mud fraction (< 63 μm) for sites in the Outer Zones. Here, we 

used the actual characteristics of the sediment (grain size fractions) from each site as 

well as explicit exposure indices (furthest and closest wind exposure) to identify two 

physical groups of sites: those having coarser sediments and greater exposure (group 

C) and those having finer sediments and lesser exposure (group F). 

The best overall ecological models were obtained using all sites together, rather than 

splitting them into two groups, and the biotic assemblages had the strongest 

relationships with metal concentrations in the total sediment sample (PC1.500). This 

supports the notion that the biota are responding to all metals in the sediments, and not 

just to those considered to be bioavailable in the mud fraction. Although group C and 

group F corresponded roughly with the existing designations of Outer Zones and 



 72 

Settling Zones, respectively, better models were obtained using the site designations of 

C and F. No advantage was obtained by relating sites in group F alone to total metal 

concentrations. However, excellent models were obtained by considering sites in group 

C alone and relating these to metal concentrations in the mud fraction (PC1.63, δ = 

0.985, Bray-Curtis, sqrt). These results therefore also support the notion that heavy 

metals are potentially more bioavailable in the mud fraction in outer zones (Williamson 

and Mills 2002).   

We consider that the following models qualify as “best” models from the work done 

here. 

For all sites, regardless of their physical characteristics: 

 PC1.500 vs. Bray-Curtis dissimilarities on square-root transformed abundances of all 

taxa in the assemblage (canonical correlation δ = 0.871). 

 PC1.500 vs. Bray-Curtis dissimilarities on square-root transformed abundances of 

the BVSTEP subset of 16 taxa (δ = 0.865). 

 PC1.500 vs. Bray-Curtis dissimilarities on square-root transformed abundances of 

the sensitivity subset of 22 taxa (δ = 0.808). 

Also, for sites having physical characteristics of coarser sediments and greater 

exposure (i.e., sites in group C only), an excellent model was obtained for metal 

concentrations in the mud fraction: 

 PC1.63 vs. Bray-Curtis dissimilarities on square-root transformed abundances of all 

taxa for sites in group C (δ = 0.985). 

Although not as strong as models using metals from the total sample, the best overall 

models using metal concentrations in the mud fraction were: 

 PC1.63 vs. Modified Gower dissimilarities (log base 10) of all taxa (δ = 0.841). 

 PC1.63 vs. Bray-Curtis dissimilarities on square-root transformed abundances of all 

taxa (δ = 0.787). 

7.3 Some comments on models using subsets of taxa 

Models using subsets of taxa (the BVSTEP subset with 16 variables or the sensitivity 

subset with 22 variables) gave surprisingly good results for PC1.500 when it came to 

model validation using new sites. It is tempting to consider using only a subset of taxa 

for benthic health models, as sampling subsets might be more efficient than 

enumerating and identifying all of the taxa present at a site. There are, however, some 

potential pitfalls with using subsets of taxa for assessing ecosystem health.  

First, subsets chosen using statistical methods may have some practical problems 

under longer-term scrutiny. First, the subset identified by BVSTEP included some fairly 

rare taxa (e.g., Trochodota dendyi, Haminoea zelandiae, Cirolana sp., Edwardsia sp., see 
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frequencies of occurrence in Appendix 2). The inherent normalization of variables in the 

CAP analysis may result in there being an emphasis on such rarer taxa if their 

occurrence happens to discriminate sites along the pollution gradient well. However, 

patchily distributed species tend to have highly variable distributions and thus may not 

actually provide good predictive properties for longer term modeling. 

In addition, some of the taxa in subsets may have been chosen because they act as 

proxies for other taxa. For example, Anthopleura aureoradiata (chosen in the BVSTEP 

subset) is an anemone that attaches to hard surfaces and tends to occur on the shells 

of cockles, Austrovenus stutchburyi, in these soft-sediment environments. Anthopleura 

may have been chosen in the subset because of a strong correlation with Austrovenus 

(Spearman’s ρ = 0.668), whereas the latter might actually respond more sensitively to 

metal contamination. It may not matter at present that correlations among species 

induce certain proxy organisms to be chosen in subsets, but if pollution were to alter 

the nature of these biological associations (e.g., perhaps Anthopleura in time could 

occur on dead shells of Austrovenus just as readily as on live shells), then the utility of 

the subset would lose its force. 

Thus, if a subset were to be used, then one which has been motivated from biological 

knowledge may be more defensible in the long run than one which was obtained via 

statistical methods. Although the sensitivity subset is certainly a candidate in this 

respect (and it seemed to perform reasonably well for validation), the canonical 

correlation for the model using this subset (δ = 0.808) was not as high as that obtained 

when all taxa were used (δ = 0.871). This suggests that, at present, the CAP model of 

PC1.500 versus all taxa (BC, sqrt) should be the one used routinely for monitoring and 

management. Models using subsets (either the 22-variable sensitivity or the 16-variable 

BVSTEP subset) can also be used presently with a high degree of confidence in the 

event that enumeration of all taxa is not possible.  

7.4 Recommendations 

We recommend the use of the following two models in tandem: 

 PC1.500 vs. Bray-Curtis dissimilarities on square-root transformed abundances of all 

taxa (canonical correlation δ = 0.871). 

 PC1.63 vs. Bray-Curtis dissimilarities on square-root transformed abundances of all 

taxa for sites in group C only (δ = 0.985). 

An outline of appropriate steps to follow given one or more new samples of ecological 

data is shown in Fig. 25 and detailed below (numbers for steps here correspond to 

numbers given in the figure): 

1. Bray-Curtis dissimilarities between the new samples and existing samples 

(square-root transformed) can be used to place the new samples onto the CAP 

axis in the model of PC1.500 versus all taxa. 
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2. The values of PC1.500 for the new samples can then be predicted from the 

values of each of them along the CAP axis. 

3. The boundary values given in Table 6 along PC1.500 can be used to classify 

each new sample into one of the groups from 1 to 5 (“the first classification”). 

4. If physical data are available, use them to classify the new samples as 

belonging either in group C or group F. To err on the side of caution, borderline 

samples should be considered as belonging in group C. If physical data are 

unavailable, determine whether the site may be considered to belong in the 

Outer Zone. 

5. For sites in group C (or in the Outer Zone), Bray-Curtis dissimilarities between 

the new samples and existing samples in group C only (square-root 

transformed) can be used to place the new samples onto the CAP axis in the 

model of PC1.63 versus all taxa. 

6. The values of PC1.63 for the new samples can then be predicted from the 

values of each of them along this CAP axis. 

7. Use the boundary values given in Table 6 along PC1.63 to classify each new 

sample into one of the groups from 1 to 5 (“the second classification”). 

8. For each of the new samples, take the larger of the first and second 

classifications (obtained in steps 3 and 7 above, respectively) as the most 

cautious estimator of the current state of benthic health (1 = healthy and 5 = 

polluted). New samples in group F will use only the first classification. 

9. If metal concentration data are available, use the direct equations for each of 

PC1.500 and PC1.63 along with Table 6 in order to validate results obtained 

using the ecological data. In addition, the ERC guidelines can also be applied on 

the basis of individual metal concentrations in this case. 

By using the above outlined approach, these models can be used to monitor and make 

management decisions concerning benthic ecosystem health in the Auckland Region. 

Appropriate software (PRIMER v6, with the add-on PERMANOVA+ , by Anderson and 

Gorley, to be released in 2007) and guidance on its use will be provided to the ARC in 

order to perform all necessary calculations and implement these techniques. We also 

recommend that the degree of correlation among metal contaminants be checked 

through time to ground-truth the ongoing utility of the PC axes as overall pollution 

gradients. In addition, if new species or taxa are sampled in future that are not included 

in the current models, then these should simply be omitted. If, however, the number of 

new taxa encountered increases and they are sampled consistently, then new models 

should be developed to include them. 
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Fig. 25. Flowchart of recommended analyses to assess benthic ecosystem health.
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9 Appendix 1. List of samples used for modeling and validation.  
There were 95 samples in total obtained from 84 sites across the region. Each sample 

is uniquely identifiable for a given site in a give year. Coordinates for each site are given 

according to the New Zealand Map Grid. The column “Mod.Val” indicates whether a 

sample was used for modeling (M) or for validation (V). An asterisk indicates that 

sediment texture for that site was actually obtained in May 2006, even though the 

biology was sampled in the year shown (see text for details). The column headed 

“Source” identifies the source of data, with the first integer indicating the source for 

sediment data, and the second integer indicating the source for biological data, as 

follows: 1 = Kingett Mitchell Limited (2002), 2 = Funnell et al. (2003), 3 = Hewitt et al. 

(2004), 4 = Reed and Webster (2004), 5 = Williamson and Kelly (2003), 6 = new 

unpublished data collected by the ARC, 7 = Ford and Anderson (2005), 8 = Hewitt et al. 

(2006). 

 
Site no. Site name Easting Northing Mod.Val Year Source 

1 Anns Creek 2672634 6473059 M 2002 4, 1 

1 Anns Creek 2672634 6473059 M 2005 6, 6 

2 Auckland Airport 2672515 6463388 V 2002 5, 2 

3 Awatea Rd 2670466 6481358 M 2004 6, 6 

4 Bengazi 2677243 6476984 M 2004 6, 6 

5 Bowden Rd 2675670 6474640 M 2004 6, 6 

6 Brigham 2653704 6490358 M 2005 8, 8 

7 Cape Horn 2659917 6470448 M 2002 5, 2 

8 Chelsea 2664602 6485392 M 2004 6, 6 

9 Clarkes Beach 2661675 6452219 M 2002 5, 2 

10 Coxes, Waitemata 2663914 6482238 M 2004 6, 6 

11 Coxs 2664141 6482090 V 2005* 6, 6 

12 Glendowie 2678366 6479045 M 2005* 6, 6 

13 Hellyers 2661837 6489965 M 2005* 6, 6 

14 Hellyers outer 2660692 6489573 M 2005 8, 8 

15 Henderson Entrance 2658591 6486244 M 2002 5, 3 

15 Henderson Entrance 2658591 6486244 M 2004 6, 6 

16 Henderson Lower 2656715 6484645 M 2004 6, 6 

17 Henderson Upper 2656017 6483479 M 2002 5, 1 

17 Henderson Upper 2656017 6483479 V 2005 6, 6 

18 Herald Island 2658153 6489728 V 2005* 6, 6 

19 Hi North 2658478 6490325 M 2005 8, 8 

20 Hillsborough 2667210 6473280 M 2004 6, 6 

21 Hobson - Purewa Bridge 2672100 6480461 V 2005* 6, 6 

22 Hobson - Tohunga 2670174 6480830 M 2005* 6, 6 

23 Hobsonville 2660106 6487972 M 2002 5, 3 

23 Hobsonville 2660106 6487972 M 2005 6, 6 

24 Kaipatiki 2661944 6489895 M 2005 6, 6 
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Site no. Site name Easting Northing Mod.Val Year Source 

25 Kendalls 2662758 6484849 V 2004 6, 6 

26 Little Shoal Bay 2665796 6485551 V 2005* 6, 6 

27 Lower Shoal Bay 2667976 6486007 M 2005 6, 6 

28 Lucus outer 2658788 6491194 M 2005 8, 8 

29 Lucus Te Wharau 2659685 6491950 M 2004 6, 6 

30 Lucus Upper 2660154 6492967 M 2005 6, 6 

31 Mangemangeroa B 2684748 6474915 M 2004* 6, 6 

32 Mangemangeroa E 2684488 6474876 V 2004* 6, 6 

33 Mangere Cemetery 2670400 6472900 M 2005 6, 6 

34 Mangere Inlet: Harania Creek 2672344 6471451 M 2005* 6, 6 

35 Mangere Inlet: Kiwi Esplanade 2668945 6472230 M 2005* 6, 6 

36 Mangere Inlet: Tararata Creek 2670928 6471434 V 2005* 6, 6 

37 Meola Inner 2662817 6481374 M 2002 4, 1 

37 Meola Inner 2662817 6481374 M 2005 6, 6 

38 Meola Outer 2662751 6481994 M 2004 6, 6 

39 Meola Reef 2662897 6482580 M 2002 4, 1 

39 Meola Reef 2662897 6482580 M 2005 6, 6 

40 Meola West 2662746 6481631 M 2005* 6, 6 

41 Middlemore 2675627 6470765 M 2002 4, 1 

41 Middlemore 2675627 6470765 M 2005 6, 6 

42 Motions 2663020 6481413 M 2002 4, 1 

42 Motions 2663020 6481413 M 2005 6, 6 

43 Motions East 2663127 6481978 M 2005* 6, 6 

44 Newmarket 2670161 6480662 V 2005 6, 6 

45 Ngataringa Bay 2670233 6485348 M 2005* 6, 6 

46 Oakley 2661590 6479618 M 2005 6, 6 

47 Okura D 2664903 6502243 M 2004* 6, 7 

48 Okura J 2663712 6501553 V 2004* 6, 7 

49 Orewa F 2661291 6509855 M 2004* 6, 7 

50 Orewa G 2661690 6509891 M 2004* 6, 7 

51 Otahuhu Creek 2675971 6472757 M 2004 6, 6 

52 Out Main UWH 2659043 6490098 M 2005 8, 8 

53 Pakuranga 2678591 6473361 V 2005 6, 6 

54 Pakuranga mid 2677797 6473177 M 2005* 6, 6 

55 Panmure 2674935 6475550 M 2004 5, 1 

56 Paremoremo 2656364 6492284 M 2005 6, 6 

57 Paremoremo upper 2656207 6492093 M 2005 6, 6 

58 Pollen Island 2660495 6479910 M 2005 6, 6 

59 Princess St 2676230 6472210 M 2004 6, 6 

60 Puhinui 2675443 6462162 M 2005* 6, 6 

61 Puhinui, Entrance 2675350 6461350 M 2002 5, 1 

62 Puhoi F 2663158 6517525 M 2004* 6, 7 

63 Puhoi H 2662611 6517889 M 2004* 6, 7 
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Site no. Site name Easting Northing Mod.Val Year Source 

64 Pukaki 2671080 6465235 M 2005* 6, 6 

65 Purewa 2672906 6480183 M 2004 6, 6 

66 Rangitopuni 2653196 6492099 M 2005* 6, 6 

67 Rangitopuni UWH 2653449 6491807 M 2005 8, 8 

68 Shoal Bay, Hillcrest 2667825 6487365 M 2004 6, 6 

69 Shoal Bay, Upper 2668358 6486410 M 2004 6, 6 

70 Turanga G 2685520 6473527 M 2004* 6, 7 

71 Turanga J 2685936 6472558 M 2004* 6, 7 

72 Upper main UWH 2654360 6491000 M 2005 8, 8 

73 Victoria Ave 2671269 6480637 M 2004 6, 6 

74 Waiwera E 2663038 6516553 M 2004* 6, 7 

75 Waiwera J 2662264 6516484 M 2004* 6, 7 

76 Weiti 2662420 6508229 M 2005* 6, 6 

77 Whakataka 2671684 6481227 M 2002 5, 1 

77 Whakataka 2671684 6481227 M 2005 6, 6 

78 Whau East 2659578 6477506 M 2005* 6, 6 

79 Whau Entrance 2658515 6482039 M 2004 6, 6 

80 Whau Entrance, WHO A 2659100 6482450 V 2002 5, 3 

81 Whau Lower 2658691 6479191 V 2005 6, 6 

82 Whau Upper 2659738 6476817 M 2004 6, 6 

82 Whau Upper 2659738 6476817 M 2005 6, 6 

83 Whau Wairau 2658525 6477463 M 2002 4, 1 

83 Whau Wairau 2658525 6477463 M 2005 6, 6 

84 Whau West 2658343 6479010 M 2005* 6, 6 
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10 Appendix 2. List of taxa in decreasing order of frequency of 
occurrence (out of the 95 sample units listed in Appendix 1). 

 
Group Taxon Frequency 

Polychaete Polydorid complex 90 

Crustacean Helice, Hemigrapsus, Macropthalmus 88 

Polychaete Nereidae 88 

Polychaete Heteromastus filiformis 87 

Nemertean Nemertean  87 

Crustacean Phoxocephalidae 87 

Mollusc Arthritica bifurcata 79 

Polychaete Aquilaspio aucklandica 73 

Mollusc Nucula hartvigiana 73 

Mollusc Austrovenus stutchburyi 72 

Polychaete Scolecolepides benhami 63 

Annelida Capitella, Oligochaetes 62 

Crustacean Paracalliope novizealandiae 60 

Crustacean Corophidae 59 

Mollusc Macomona liliana 57 

Polychaete Aricidea sp. 52 

Polychaete Glycera spp. 52 

Crustacean Amphipod other 49 

Polychaete Cossura consimilis 49 

Crustacean Colurostylis spp. 47 

Polychaete Orbinidae 46 

Crustacean Halicarcinus spp. 43 

Polychaete Exogoninae 39 

Mollusc Theora lubrica 39 

Mollusc Cominella glandiformis 38 

Mollusc Mactra ovata 35 

Mollusc Amphibola crenata 32 

Mollusc Notoacmea spp. 32 

Cnidarian Anthopleura aureoradiata 30 

Polychaete Aonides oxycephala 30 

Polychaete Macroclymenella stewartensis 25 

Crustacean Mysidacea 25 

Polychaete Pectinaria australis 24 

Crustacean Alpheus sp. 23 

Crustacean Exosphaeroma spp. 23 

Polychaete Goniadidae 22 

Mollusc Paphies australis 22 

Crustacean Barnacles 21 
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Group Taxon Frequency 

Mollusc Zeacumantus lutulentis 17 

Polychaete Cirratulidae 16 

Crustacean Isopod other 16 

Polychaete Magelona sp. 16 

Crustacean Pinnotheres spp. 15 

Mollusc Zediloma subrostrata 15 

Polychaete Euchone sp. 14 

Polychaete Paraonidae (not Aricidea) 14 

Polychaete Scolelepis spp.  13 

Crustacean Tanaidacea 13 

Polychaete Armandia maculata 12 

Mollusc Chiton 12 

Polychaete Lepidonotinae 12 

Mollusc Turbonilla sp. 12 

Mollusc Hiatula siliqua 11 

Crustacean Waitangi brevirostris 11 

Polychaete Aglaophamus macroura 10 

Mollusc Bivalve unid. 9 

Mollusc Haminoea zelandiae 9 

Polychaete Sabellidae 9 

Mollusc Cominella adspersa 7 

Polychaete Paralepidonotus ampulliferus 7 

Polychaete Syllinae 7 

Cnidarian Edwardsia sp. 6 

Mollusc Gastropod unknown 6 

Mollusc Micrelenchus sp. 6 

Mollusc Musculista senhousia 5 

Phoronid Phoronid 5 

Crustacean Cyclaspis thomsoni 4 

Crustacean Disconatus accolus 4 

Echinoderm Ophiuroid 4 

Mollusc Zegaluri tenius 4 

Polychaete Asychis amphiglypta 3 

Polychaete Hesionidae 3 

Crustacean Nebalace 3 

Polychaete Spionidae  3 

Echinodermata Trochodota dendyi 3 

Mollusc Xymene sp. 3 

Mollusc Bulla quoyi 2 

Mollusc Carditidae 2 

Crustacean Cirolana sp. 2 

Mollusc Crassostrea gigas 2 

Mollusc Felaniella zelandica 2 
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Group Taxon Frequency 

Polychaete Lumbrineridae 2 

Polychaete Owenia fusiformis 2 

Polychaete Phyllodocid spp. 2 

Platyhelminth Platyhelminth 2 

Crustacean Pontophilus australis 2 

Mollusc Solemya parkinson 2 

Mollusc Venericardia sp. 2 

Mollusc Amalda sp. 1 

Crustacean Anthuridae 1 

Crustacean Diastylopsis sp. (Cumacea) 1 

Polychaete Harmothoe sp. 1 

Polychaete Maldanidae 1 

Crustacean Mantis shrimp 1 

Polychaete Minuspio sp. 1 

Polychaete Notomastus sp. 1 

Mollusc Opistobranch (Philine type) 1 

Polychaete Polynoid 1 

Mollusc Scintillona zelandica 1 

Sipunculid Sipunculid 1 

Mollusc Tellina edgari 1 

Polychaete Travisa olens 1 
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11 Appendix 3. Brief assessment of sample size bias 
The present study used averages of abundance values for the biological samples where 

replication per site varied from n = 6 to n = 12, with most sites having n = 10 replicates. 

The primary potential source of bias for multivariate analyses in this case would be 

caused by underestimates of richness (number of taxa) and therefore overestimates of 

dissimilarity (e.g., Chao et al. 2005) at sites where fewer replicates were taken. This is 

because greater replication yields a greater probability of sampling rarer species. Two 

datasets were generated from available source data: (a) one where averages were 

recorded for each taxon at each site from n = 6 cores and (b) one where averages were 

recorded for each taxon at each site from all available cores (thus, a mixture of sample 

sizes). Previous analyses found that the use of averages using all available information 

(a mixture of sample sizes) resulted in the most useful models (Anderson et al. 2002). 

The relationship between the two datasets in terms of richness and in terms of average 

total abundance was investigated explicitly. There was a slight negative bias for 

richness using n = 6, although not for total average abundances when all samples were 

used (Fig. A3). The correlations were very strong in each case (R2 > 0.90). Thus, sample 

size bias was considered negligible, and averages from all available samples at each site 

were used in order to maximize information content for the development of subsequent 

models. 
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Fig. A3. Relationship between two datasets using n = 6 versus using n = maximum available for
(a) richness (total no. of taxa) and for (b) total average abundance per site.
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12 Appendix 4. Summary of diagnostics and power transformations trialed for physical and chemical 
variables. 
 

Cu < 63 μm, power = 0.37, Shapiro-Wilk test on raw data: W = 0.9294, P = 7.097e-05, on optimally transformed data: W = 0.9776, P = 0.1027 

and using the log-transformation: W = 0.9464, P = 0.0006955. 
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Cu < 500 μm, power = 0.12, Shapiro-Wilk test on raw data: W = 0.906, P = 4.511e-06, on optimally transformed data: W = 0.9455, P = 

0.0006097 and using the log-transformation: W = 0.9431, P = 0.0004389. 
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Zn < 63 μm, power = 0.19, Shapiro-Wilk test on raw data: W = 0.9085, P = 5.978e-06, on optimally transformed data: W = 0.9842, P = 0.3103 

and on log-transformed data: W = 0.9772, P = 0.09524. 
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Zn < 500 μm, power = 0.15, Shapiro-Wilk test on raw data: W = 0.9082, P = 5.803e-06, on optimally transformed data: W = 0.9587, P = 

0.004386 and on log-transformed data: W = 0.954, P = 0.002130. 
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Pb < 63 μm, power = 0.27, Shapiro-Wilk test on raw data: W =  0.8753, P = 2.058e-07, on optimally transformed data: W = 0.9674, P = 

0.01808 and on log-transformed data: W = 0.9432, P = 0.0004462. 
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Pb < 500 μm, power = 0.26, Shapiro-Wilk test on raw data: W = 0.9039, P = 3.598e-06, on optimally transformed data: W = 0.9763, P = 

0.08172 and on log-transformed data: W = 0.9537, P = 0.002053. 
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Coarse sand, power = −0.79, Shapiro-Wilk test on raw data: W = 0.6929, P = 8.477e-13, on optimally transformed data: W = 0.9192, P = 

2.024e-05 and on log-transformed data: W = 0.8494, P = 2.114e-08. 
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Medium sand, power = -0.01, Shapiro-Wilk test on raw data: W = 0.7993, P = 4.773e-10, on optimally transformed data: W = 0.9123, P = 

9.142e-06 and on log-transformed data: W = 0.9123, P = 9.154e-06. 
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Fine sand, power = 0.03, Shapiro-Wilk test on raw data: W = 0.8575, P = 4.205e-08, on optimally transformed data: W = 0.9678, P = 0.0194 

and on log-transformed data: W = 0.9701, P = 0.02825. 
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Silt and clay, power = 0.37, Shapiro-Wilk test on raw data: W = 0.8800, P = 3.199e-07, on optimally transformed data: W = 0.9055, P = 4.275e-

06 and on log-transformed data: W = 0.8867, P = 6.15e-07. 
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Furthest wind exposure, power = -0.49, Shapiro-Wilk test on raw data: W = 0.7521, P = 1.144e-10, on optimally transformed data: W = 0.955, 

P = 0.00481 and on log-transformed data: W = 0.9726, P = 0.06659. 
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Closest wind exposure, power = 0.001, Shapiro-Wilk test on raw data: W = 0.6539, P = 7.497e-13, on optimally transformed data: W = 0.9606, 

P = 0.01088 and on log-transformed data: W = 0.9606, P = 0.01082. 
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13 Appendix 5. List of taxa in the ecological subset previously 
proposed and investigated by Anderson et al. (2002) and Hewitt 
et al. (2005). 

 
Order/Class Source taxon name Taxon name as in current list 

Amphipoda Corophidae Corophidae 

Amphipoda Methlimedon sp. Amphipod other 

Amphipoda Paracalliopidae Paracalliope novizealandiae 

Amphipoda Phoxocephalidae Phoxocephalidae 

Amphipoda Torridoharpinia hurleyi Phoxocephalidae 

Amphipoda Waitangi brevirostris Waitangi brevirostris 

Bivalvia Arthritica bifurca Arthritica bifurcata 

Bivalvia Austrovenus stutchburyi Austrovenus stutchburyi 

Bivalvia Hiatula siliqua Hiatula siliqua 

Bivalvia Macomona liliana Macomona liliana 

Bivalvia Nucula hartvigiana Nucula hartvigiana 

Bivalvia Paphies australis Paphies australis 

Bivalvia Theora lubrica Theora lubrica 

Crustacea Colurostylis lemurum Colurostylis spp. 

Crustacea Halicarcinus whitei Halicarcinus spp. 

Crustacea Helice crassa Helice, hemigrapsus, macropthalmus 

Crustacea Macrophthalmus hirtipes Helice, hemigrapsus, macropthalmus 

Cnidaria Anthopleura aureoradiata Anthopleura aureoradiata 

Echinodermata Trochodota dendyi Trochodota dendyi 

Gastropoda Cominella glandiformis Cominella glandiformis 

Gastropoda Notoacmea helmsi Notoacmea spp. 

Isopoda Exosphaeroma spp. Exosphaeroma spp. 

Polychaeta Aglaophamus macroura Aglaophamus macroura 

Polychaeta Aonides oxycephala Aonides oxycephala 

Polychaeta Aquilaspio aucklandica Aquilaspio aucklandica 

Polychaeta Aricidea sp. Aricidea sp. 

Polychaeta Armandia maculata Armandia maculata 

Polychaeta Boccardia syrtis Polydorid complex 

Polychaeta Pseudopolydora sp. Polydorid complex 

Polychaeta Heteromastus filiformis Heteromastus filiformis 

Polychaeta Cirratulidae Cirratulidae 

Polychaeta Cossura sp. Cossura consimilis 

Polychaeta Euchone sp. Euchone sp. 

Polychaeta Glycera sp. Glycera spp. 

Polychaeta Goniada emerita Goniadidae 

Polychaeta Lumbrineris sp. Lumbrineridae 

Polychaeta Macroclymenella stewartensis Macroclymenella stewartensis 
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Order/Class Source taxon name Taxon name as in current list 

Polychaeta Magelona ?dakini Magelona sp. 

Polychaeta Nereidae Nereidae 

Polychaeta Orbinia papillosa Orbinidae 

Polychaeta Scoloplos spp. Orbinidae 

Polychaeta Owenia fusiformis Owenia fusiformis 

Polychaeta Paraonidae Paraonidae (not Aricidea) 

Polychaeta Pectinaria australis Pectinaria australis 

Polychaeta Scolecolepides benhami Scolecolepides benhami 

Polychaeta Travisia olens Travisia olens 

Nemertina Nemerteans Nemertean 

Oligochaeta Oligochaetes Capitella, Oligochaetes 
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14 Appendix 6. Scatterplots of abundances of individual taxa vs. 
PC1.500.  

Scatterplots of abundances of individual taxa vs. PC1.500.  An asterisk (*) denotes a 

species chosen for subset analysis based on the visual pattern of relationship shown 

here. 
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Scatterplots of abundances of individual taxa vs. PC1.500.  An asterisk (*) denotes a 

species chosen for subset analysis based on the visual pattern of relationship shown 

here. 
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Scatterplots of abundances of individual taxa vs. PC1.500.  An asterisk (*) denotes a 

species chosen for subset analysis based on the visual pattern of relationship shown 

here. 
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15 Appendix 7. Scatterplots of abundances of individual taxa vs. 
PC1.63.  

Scatterplots of abundances of individual taxa vs. PC1.63.  An asterisk (*) denotes a 

species chosen for subset analysis based on the visual pattern of relationship shown 

here. 
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Scatterplots of abundances of individual taxa vs. PC1.63.  An asterisk (*) denotes a 

species chosen for subset analysis based on the visual pattern of relationship shown 

here. 
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Scatterplots of abundances of individual taxa vs. PC1.63.  An asterisk (*) denotes a 

species chosen for subset analysis based on the visual pattern of relationship shown 

here. 
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16 Appendix 8. Membership of samples into groups according to 
physical variables 
List of samples indicating membership in one of two groups according to physical 

variables: F = fine sediments, more sheltered (51 samples) and C = coarser sediments, 

more exposed (30 samples) and also according to habitats as previously defined (ARC 

2002) in terms of either Settling Zone (SZ, 33 samples) or Outer Zone (OZ, 48 samples). 

 

Year Site.no Site.name Mod.Val 
Physical 
Group Zone 

2002 1 Anns Creek M F OZ 
2005 1 Anns Creek M F OZ 
2002 2 Auckland Airport V C OZ 
2004 3 Awatea Rd. M F OZ 
2004 4 Bengazai M C OZ 
2004 5 Bowden Rd. M F OZ 
2005 6 Brigham M F SZ 
2002 7 Cape Horn M C OZ 
2004 8 Chelsea M C OZ 
2002 9 Clarkes Beach M C OZ 
2004 10 Coxes, Waitemata M C OZ 
2005 11 Coxs V C OZ 
2005 12 Glendowie M C OZ 
2005 13 Hellyers M F SZ 
2005 14 Hellyers outer M F OZ 
2002 15 Henderson Entrance M C OZ 
2004 15 Henderson Entrance M C OZ 
2004 16 Henderson lower M F SZ 
2002 17 Henderson Upper M F SZ 
2005 17 Henderson Upper V F SZ 
2005 18 Herald Island V F OZ 
2005 19 Hi North M C OZ 
2004 20 Hillsborough M C OZ 
2005 21 Hobson: Purewa Bridge V F SZ 
2005 22 Hobson: Tohunga M F OZ 
2002 23 Hobsonville M C OZ 
2005 23 Hobsonville M C OZ 
2005 24 Kaipatiki M F SZ 
2004 25 Kendalls V C OZ 
2005 26 Little Shoal Bay V C OZ 
2005 27 Lower Shoal Bay M C OZ 
2005 28 Lucus outer M C OZ 
2004 29 Lucus Te Wharau M F SZ 
2005 30 Lucus Upper M F SZ 
2004 31 Mangemangeroa B M C OZ 
2004 32 Mangemangeroa E V C OZ 
2005 33 Mangere Cemetery M F OZ 
2005 34 Mangere Inlet: Harania Creek M F OZ 
2005 35 Mangere Inlet: Kiwi Esplanade M F OZ 
2005 36 Mangere Inlet: Tararata Creek V F OZ 
2002 37 Meola Inner M F SZ 
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Year Site.no Site.name Mod.Val 
Physical 
Group Zone 

2005 37 Meola Inner M F SZ 
2004 38 Meola Outer M C OZ 
2002 39 Meola Reef M C OZ 
2005 39 Meola Reef M C OZ 
2005 40 Meola West M F OZ 
2002 41 Middlemore M F SZ 
2005 41 Middlemore M F SZ 
2002 42 Motions M F SZ 
2005 42 Motions M F SZ 
2005 43 Motions East M C OZ 
2005 44 Newmarket V C OZ 
2005 45 Ngataringa Bay M F SZ 
2005 46 Oakley M F SZ 
2004 47 Okura D M C OZ 
2004 48 Okura J V C SZ 
2004 49 Orewa F M F OZ 
2004 50 Orewa G M F OZ 
2004 51 Otahuhu creek M F SZ 
2005 52 Out Main UWH M C OZ 
2005 53 Pakuranga V F SZ 
2005 54 Pakuranga mid M F SZ 
2004 55 Panmure M F SZ 
2005 56 Paremoremo M F SZ 
2005 57 Paremoremo upper M F SZ 
2005 58 Pollen Island M C OZ 
2004 59 Princess St M C OZ 
2005 60 Puhinui M F SZ 
2002 61 Puhinui, Entrance M C OZ 
2004 62 Puhoi F M C OZ 
2004 63 Puhoi H M F OZ 
2005 64 Pukaki M F SZ 
2004 65 Purewa M F SZ 
2005 66 Rangitopuni M F SZ 
2005 67 Rangitopuni UWH M F SZ 
2004 68 Shoal Bay, Hillcrest M F SZ 
2004 69 Shoal Bay, Upper M C SZ 
2004 70 Turanga G M C OZ 
2004 71 Turanga J M F SZ 
2005 72 Upper main UWH M F OZ 
2004 73 Victoria Ave M F OZ 
2004 74 Waiwera E M F OZ 
2004 75 Waiwera J M F OZ 
2005 76 Weiti M F SZ 
2002 77 Whakataka M C OZ 
2005 77 Whakataka M C OZ 
2005 78 Whau East M F OZ 
2004 79 Whau Entrance M C OZ 
2002 80 Whau Entrance WHO A V C OZ 
2005 81 Whau Lower V F OZ 
2004 82 Whau Upper M F SZ 
2005 82 Whau Upper M F SZ 
2002 83 Whau Wairau M F SZ 
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Year Site.no Site.name Mod.Val 
Physical 
Group Zone 

2005 83 Whau Wairau M F SZ 
2005 84 Whau West M F OZ 
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17 Appendix 9. Summary of CAP analyses relating biotic 
assemblages to pollution gradients 
Summary of CAP analyses relating biotic assemblages to pollution gradients based on 

either the whole sample (< 500 μm) or on the mud fraction (< 63 μm), done separately 

for samples from either the Settling Zone (SZ, 33 samples) or the Outer Zone (OZ, 48 

samples). Table headings are as given for Tables 13 and 17 in the text. 

 
 <500 μm 

 Set m prop.G SSRES δ1 correl 

BC, sqrt SZ 5 0.686 0.653 0.557 0.746 

Euc, ln(x+1) SZ 10 0.904 0.598 0.738 0.859 

Mod. Gower SZ 7 0.683 0.634 0.546 0.739 

BC, sqrt OZ 9 0.825 0.400 0.711 0.843 

Euc, ln(x+1) OZ 11 0.864 0.545 0.668 0.817 

Mod. Gower OZ 17 0.875 0.466 0.775 0.880 

 

 < 63 μm 

 Set m prop.G SSRES δ1 correl 

BC, sqrt SZ 6 0.745 0.688 0.466 0.683 

Euc, ln(x+1) SZ 11 0.924 0.477 0.790 0.889 

Mod. Gower SZ 8 0.727 0.668 0.519 0.720 

BC, sqrt OZ 15 0.943 0.355 0.815 0.903 

Euc, ln(x+1) OZ 11 0.864 0.446 0.741 0.861 

Mod. Gower OZ 28 0.983 0.400 0.896 0.947 
 
 
 
 
 


